Publications for Project of Justin Ezekiel

Publications related to Project of Justin Ezekiel

Assessment and optimization of carbon storage and combined EGR-CPG development from high-temperature natural gas reservoirs

2.  L. Zhang, J. Ezekiel, D. Li, J. Pei Potential Assessment of CO2 Injection for Heat Mining and Geological Storage in Geothermal Reservoirs of China, Applied Energy, 122 pp. 237-246, 2014. Abstract
Supercritical CO2 has good mobility and certain heat capacity, which can be used as an alternative of water for heat recovery from geothermal reservoirs, meanwhile trapping most of injected CO2 underground to achieve the environmental benefits. In this paper, different types of geothermal resources are assessed to screen reservoirs suitable for heat mining and geological storage by CO2 injection, in terms of geological properties, heat characteristics, storage applicability, and development prospects, etc. Hot dry rock, deep saline aquifer, and geopressured reservoir are selected as the potential sites for this study, mainly due to their relatively positive geological conditions for CO2 circulation and storage. Reservoir simulations are conducted to analyze the heat extracting capacity and storage efficiency of CO2 in the promising geothermal reservoirs. A simple calculation method is presented to estimate the potentials of heat mining and CO2 storage in the major prospective geothermal regions of China. The preliminary assessment results show that the recoverable geothermal potential by CO2 injection in China is around 1.55 × 1021 J with hot dry rocks as the main contributor. The corresponding CO2 storage capacity is up to 3.53 × 1014 kg with the deep saline aquifers accounting for more than 50%. CO2 injection for geothermal production is a more attractive option than pure CO2 storage due to its higher economic benefits in spite of that many technological and economic issues still need to be solved in the future.
/ Download
1.  J.B. Randolph, M.O. Saar Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration, Energy Procedia, 4 pp. 2206-2213, 2011. Abstract
Carbon dioxide (CO2) sequestration in deep saline aquifers and exhausted oil and natural gas fields has been widely considered as a means for reducing CO2 emissions to the atmosphere as a counter-measure to global warming. However, rather than treating CO2 merely as a waste fluid in need of permanent disposal, we propose that it could also be used as a working fluid in geothermal energy capture, as its thermodynamic and fluid mechanical properties suggest it transfers geothermal heat more efficiently than water. Energy production and sales in conjunction with sequestration would improve the economic viability of CO2 sequestration, a critical challenge for large-scale implementation of the technology. In addition, using CO2 as the working fluid in geothermal power systems may permit utilization of lower temperature geologic formations than those that are currently deemed economically viable, leading to more widespread utilization of geothermal energy. Here, we present the results of early-stage calculations demonstrating the geothermal energy capture potential of CO2-based geothermal systems and implications of such energy capture for the economic viability of geologic CO2 sequestration.
/ Download