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This thesis presents measurements of permeability, k, porosity, ¢, and microstruc-
tural parameters of vesicular basalts. Measurements are compared with theoretical
models. A percolation theory and a Kozeny-Carman model are used to interpret the
measurements and to investigate relationships between porosity, microstructure, and
permeability.

Typical permeabilities for vesicular basalts are in the range of 107 < k <
1071% m?. Best permeability estimates, following power laws predicted by percolation
theory, are obtained when samples are used that show “impeded aperture widening”
due to rapid cooling and no bubble collapse (scoria and some flow samples). However,
slowly cooled diktytaxitic samples contain elongated, “collapsed” bubbles. Measure-
ments indicate that the vesicle pathway network remains connected and preserves
high permeabilities. Image-analysis techniques are unsuccessful if used for Kozeny-
Carman equation parameter determination for vesicular materials, probably because
the average interbubble aperture size that determins £ is not resolved with such a

technique.
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Chapter 1

Introduction

The flow of fluid through a porous material is governed by geometrical properties
such as the porosity ¢, the connectedness and tortuosity of the pore space, as well
as properties of the flowing liquid. The flux is proportional to the applied pressure
gradient driving the flow and the constant of proportionality is called Darcy’s con-
stant or the permeability k, which is a second rank tensor and has the dimensions of
length squared. Permeability is a measure of how easily a fluid flows through a porous
medium and it therefore determines the rate of fluid flow through a material. The
geometrical properties and not the properties of the fluid (density, viscosity) deter-
mine the intrinsic permeability k of a porous medium. Permeability is an important
property for studies of ground water flow and remediation, contaminant migration,
retrieval of geothermal energy, enhanced gas/oil recovery strategies, formation of ore
deposits, mechanisms of faulting, degassing processes in volcanoes (e.g. Klug et al.,
1996] and lava flows, storage of toxic and radioactive waste, and hydrothermal circu-
lation at mid-ocean ridges.

The empirically derived equation that describes flow in porous material is called

Darcy’s Law [Darcy, 1856] and is usually written in the form

u= - (VP + pgV0). (1.1)



where p is the dynamic fluid viscosity, VP the applied pressure gradient, and u
Darcy’s velocity, the fluid flux, Q, per cross sectional area, A, i.e. u = Q/A. The
term pgV ( is the elevation head at a height ( above an arbitrary datum, fluid density
p and gravitational acceleration g.

Calculating permeability for given pathway geometries and porosities, ¢, is useful
when direct permeability measurements are expensive, difficult, or impossible to carry
out. By contrast, porosities are generally easier and faster to determine and can even
be done if only an image of a homogeneous sample is available. This can be the case
for example when the permeability of a fracture system, now filled with secondary
minerals, or the permeability of a partial melt system is of interest. The goal is
therefore to find a relationship between porosity ¢ and permeability k. This has been
attempted since the early work of Rose [1945], who suggested a power-law relation
between permeability and porosity, and later Kozeny and Carman [Carman, 1956;
Dullien, 1979] and others [e.g. Berryman et al., 1987; Katz et al., 1986; Johnson
et al., 1986]. Roberts et al. [1997] provide a recent review of several permeability
estimation techniques. Most studies have focused on sedimentary rocks, and few
investigations have concentrated on vesicular igneous rocks, despite their possible
importance for contaminant storage and release (e.g. Hanford radioactive waste in
the Columbia River Basalts) or as aquifers [e.g. Ingebritsen et al., 1993; Manga, 1996,
1997].

Since two porous materials with the same total porosity can have very differ-
ent permeabilities, it is clear that there is no simple porosity-permeability relation
le.g. Cloud, 1941]. Other microstructural parameter like pore shape, pore space con-
nectedness, and pathway tortuosity must also be considered.

In this thesis I compare the measured permeability of vesicular basalts with the

predictions of theoretical models for given porosities and microstructural properties.



The goal is to find a porosity-microstructure-permeability relationship for vesicular
materials where fluids flow through permeable spheres (vesicles), in contrast to most
studies that have focused on flow around impermeable particles in granular materials.

Aquifers and reservoirs often show dual porosities and permeabilities [e.g. Bai et
al., 1993; Bear et al., 1993, p.158], with fractures governing fluid flow, and interfrac-
ture pores determining the rock’s capacity for storage and release of contaminants
and Carbon-14 loss into low-permeability zones by diffusion, leading to overestima-
tions of groundwater ages [e.g. Sanford, 1996]. Rubble zones containing fractures are
abundant in basalt flows in their top and bottom part, although they also can be
observed in central regions of the flow [e.g. Sanford, 1996]. Because of the important
role of fractures in determinating the overall fluid flow in a basalt flow aquifer it is
generally impossible to upscale laboratory permeability measurements of interfracture
cores to total aquifer permeability values [e.g. Brace, 1980; Clauser, 1992; Guéguen
et al., 1996; Sanchez-Vila et al., 1996; Tidwell et al., 1997]. However, laboratory mea-
surements are useful for contaminant storage and release (via diffusion) estimations
or more scientific questions about porosity-pore-microstructure-permeability relations
and in dual-permeability models [Bai et al., 1993].

Permeability measurements are made using a steady state gas permeameter.
Techniques used here to study permeability-porosity relationships of vesicular basalts
include image analysis (two-point correlation functions), percolation theory, Kozeny-
Carman equations, and total and connected (effective) porosity measurements (using
a gas expansion technique). I also use these measurements to obtain a better under-

standing of various magmatic processes associated with degassing.



Chapter 2

MEASUREMENT TECHNIQUES

In this Chapter I describe the rock sampling criteria that were applied in order
to obtain the information needed to study how the microstructure and porosity of a
vesicular material determine its intrinsic permeability. Further I outline the sample
preparation and experimental methods that were used to determine the permeability,
total porosity, and accesible (connected) porosity. Finally I describe the various image
analysing techniques used to gain information about the vesicle geometries, necessary
for permeability models introduced in Chapter 4, ¢-k measurement interpretations in

Chapter 5, and permeability estimation models in Chapter 6.

2.1 Sampling

The samples are taken from blocks of Holocene andesitic basalt flows and cinder
cones in the Cascade Mountain Range (Oregon) and central and eastern Oregon.
Figure 2.1 is a map showing the locations where the samples are collected and Table
I1.1 lists some of the sample location characteristics. The Aa flows show a typical
diktytaxitic texture, which is described by Dickinson [1965, p.101] as “a rock texture
of some olivine basalt in the nothwestern United States, that is characterized by
numerous jagged, irregular vesicles bounded by crystals, some of which protrude into

the cavities.” The flows typically have a dense middle and highly fractured top and

4



bottom, and therefore can be expected to show dual porosities and permeabilities,
where the unfractured middle parts show permeabilities that are signifficantly lower
(~ 10%) than the overall permeability of the aquifer [e.g. Brace, 1980]. The cinder
cones are formed during a fire fountain eruption when lava was spattered and dispersed
into the air where it often cooled below ductile deformation temperatures. This
rapid lava chilling conserved highly vesicular scoria containing subspherical pores.
Cinder cones in the Cascades Mountain Range are often aligned along fault systems
subparallel to the High Cascade Graben and are frequently associated with flows
developing at different stages at the same vent.

The collected samples were selected to enable me to relate observations of mi-
crostructures within unfractured cores to physical properties of the macroscopic ma-
terial structure. This sampling criteria does not necessarily provide a representative
cross section of the basalt flows and cinder cones. Also, by drilling cores from blocks
it is only possible to obtain the interfracture matrix permeability since the bulk of
any fluid would flow through fractures which are most abundant in the top and the
bottom part of basalt flows [e.g. Brace, 1980; Ingebritsen et al., 1993]. It is this
matrix permeability and porosity however that may determine the rock’s capacity
for storage and release of contaminants by diffusion [e.g. Sanford, 1996]. Different
bubble sizes and pathway geometries are observed in the samples which allows me to
compare their characteristics to permeability measurements and estimations.

The relatively young, fresh rock samples show little or no signs of secondary
mineralization or weathering. This is important because secondary mineralization
would decrease the permeability k of the rock by filling the void space [e.g. Keller
et al., 1979; Blackwell et al., 1988; Ingebritsen et al., 1993]. However, Blair et al.
[1996] observe a good correlation between k measurements and calculations based on

image analysis techniques, using two-point correlation functions even when 5% clay
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Table II.1: Sampling locations and rock characteristics [Walker et al., 1991]

| Name | Location | Type | Age | Characteristics |
Hoodoo | HW 126 and | scoria | Holocene basaltic andesite, glassy
HW 20 texture, very vesicular
Cascades
Belknap | McKenzie flow Holocene, basaltic andesite &
Crater Pass 1,000 to basalt flows and
Cascades 6,000 yr B.P. | associated breccia,
Lava at HW 97 scoria, | 14C age scoria if close to vent,
Butte south of flow flows show diktytaxitic
Bend, OR texture, mainly Aa, some
Qybs north of flow Pahoehoe flows
Flow Newberry
Volcano,
Cascades
Red short cut scoria | Holocene, basaltic and andesitic
Cinder between Pleistocene, | ejecta, unconsolidated,
Cone HW 58 and Pliocene oxidized, fine to coarse
HW 97, OR grained, scoria and bombs
Black short cut scoria, | Pleistocene, | scoria from mafic vent
Rock between flow Pliocene complex: basaltic andesite
Butte HW 58 and & basalt, flows show a
HW 97, OR diktytaxitic, aphyric to
porphyric texture, flows
form shields, lava cones
and valley fill
Diamond | Grand flow Holocene blocky and Pahoehoe
Crater Malheur, structures, pressure ridges
SE Oregon
Cow SE Oregon | flow Holocene, basalt and basaltic
Lake younger than | andesite, blocky and
6,800 yr Pahoehoe structures
14C age
Table 2.1:



is present in the sandstone samples. This might be expected because image analysis
does not distinguish between the original rock and the clay which is the case for the
fluid as well. Using ¢;-k relationships on the other hand would probably result in a
larger inaccuracy since the densities of the rock and the clay are different, yielding an
apparent porosity higher than the true total porosity ¢;. I expect secondary minerals

to have a similar effect as clays.

2.2 Permeability Measurement

The flow of an incompressible, Newtonian fluid is described by the Navier-Stokes

equations

0
p (8_1151 +u- Vu) = pg — VP + uViu, (2.1)

V.u=0. (2.2)

If viscous forces resisting flow dominate over inertial forces, the non-linear term on the
left-hand side of Equation (2.1) (Euler’s equation) can be neglected and Equation (2.1)

reduces to the Stokes equations
uV?u — VP + pg =0, (2.3)
V-u=0. (2.4)
Stokes flow holds true only if the Reynolds number
Re = —, (2.5)

where p is the density and p the dynamic viscosity of the fluid, is smaller than 103
for a smooth tube with a characteristic diameter d. In natural samples, e.g. vesicular
basalts, the fluid flows through tortuous, narrowing and opening pathways making

the flow polydirectional at narrow passages where the flow velocity increases. In



addition rough side walls introduce disturbances. Therefore in a cylinder of porous
material containing permeable bubbles of average diameter d, cross sectional area A,
and porosity ¢, the Reynolds number should ideally be smaller than one, for laminar

flow to occur [Bear, 1988, p.177|, and is given by

_ pQd
pAg

Darcy’s law is only valid when laminar and steady flow can be assumed. A small

Re (2.6)

pressure gradient therefore has to be applied requiring sensitive pressure and flowrate
transducers.

The elevation head in Equation (1.1) can be neglected, because of the low air
density p ~ 1.29 kg/m? [Tipler, 1991] and a maximal sample length of L., = 23 cm,
i.e. pgV({ ~ 0. Assuming that the material is isotropic simplifies the permeability
tensor k to a scalar k£, which will be used hereafter. For an applied pressure gradient

in z-direction, Equation (1.1) then becomes

k OP

The permeability £ is measured using Equation (2.7) in the form

_Q pulL

k —_ EI, (2.8)

where AP is the pressure difference across the sample cylinder of length L and cross
sectional area A. The dynamic fluid viscosity of air at ambient temperature, about
20°C, is = 1.8 x 1075 Pas [Tipler, 1991].

Measurements have to be made when both the air flow through the sample and
the pressure gradient have reached a steady state. The time necessary to reach
equilibrium due to pressure diffusion depends on the permeability of the rock. The

pressure diffusion time, ¢4, depends on the sample length L,

L2
td X ;; (29)



where
2
Gip

o’
c; is the isothermal sound speed, ¢ the porosity, p and p the density and the viscosity

K=k (2.10)

of the fluid (here air) respectively [Phillips, 1991, p. 80-83]. x can be interpreted as
the diffusivity of pressure. The pressure diffusion time is therefore given by

_ Lo
ke’

ta (2.11)

Samples with low £ or longer cylinder length L take longer to reach a constant flow
rate due to longer pressure diffusion times, Equation (2.11). Pressure differences, AP,
and flowrates, (), are therefore recorded by a personal computer at appropriate time
intervals (0.5 to 2 s). Steady state is achieved when AP and @) values stop changing.

Especially for high flow rates, necessary to generate a measurable AP, Re is
not smaller than 1 and inertial effects cannot be neglected. The AP-Q curve then
is not linear, see Figure 2.2. To account for inertial effects, several sets of AP, @)
measurements are made at steady state conditions and are related by fitting a second
order polynomial

AP = aQ + b@Q?, (2.12)

through the data, where a is a coefficient related to permeability [Bear, 1988]. Curves
for higher flow velocities and therefore higher Re numbers show a larger inertial effect
(greater curvature, see Figure 2.2b) than curves for a less pronounced inertial effect,
see Figure 2.2a.

Since air is used as the test fluid it is necessary to correct for the compressibility of
the gas as both the flux and the specific discharge (Darcy velocity) vary with pressure
from one side of the sample to the other. The correction can be made by multiplying

the obtained permeability value by 2P, /(P + P,) [Dullien, 1979]. However the applied
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Figure 2.2: Inertial effects on permeability measurements. Inertial effects at Re not
< 1 lead to a non-linear AP-() relationship which is not assumed in Darcy’s law.
The inertia effect is more pronounced at high (b) flowrates (high fluid velocities) than
at lower (a) flowrates, but is present at all fluid velocities. A curve fit and extraction
of the linear term of the polynomial curve fit yields &, which is expressed by the slope
of the curve.

pressures here are so low, (typically around 1 pound per square inch (PSI) ~ 6.89
KPa) that this effect is minor.

Another correction is needed when the bubble diameter is comparable to the
mean-free-path of the gas molecules flowing through the sample, as under these con-
ditions it cannot be assumed that the fluid velocity at the walls is zero. Instead, a
slip or drift velocity has to be taken into account, the so-called Klinkenberg effect
[Dullien, 1979]. In basalt samples, however, bubble diameters are considerably larger

than the mean-free-path of the air molecules used as the test fluid.
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2.3 Core Preparation for Permeability
Measurements

Cores are drilled from unfractured andesitic basalt blocks using a diamond drill
attached to a lathe. The core diameter is 7.2 cm, and the length varies from 2 cm to
23 c¢m to ensure that the individual average bubble radius (the characteristic length
scale) is significantly smaller than the core length, so that measurements average over
statistically representative numbers of bubbles. Cores are dried in an oven at about
60°C for several hours to ensure one fluid (air) flow in the gas permeameter. Drying
samples is easier than saturating the porous samples with water. After drying, the
side walls of the cylindrical cores are sealed with impermeable tape so that air cannot

enter or leave through the sidewalls and flow occurs along the long axis of the core.

2.4 Steady State Gas Permeameter

The permeameter (Figure 2.3) I built consists of an aluminum tube in which the
prepared rock sample is attached, by securing an aluminum ring of 3 inch (7.62 cm)
diameter to the uppermost end of the core by impermeable elastic tape. The ring
itself is attached to the aluminum tube and the contact between tube and ring is
sealed with tape, a hose clamp, and applied pressure (screws at the apparatus). This
setup suspends the sample within the tube. The maximum applied gas pressure is
P;; atmospheric pressure is P,.

The test fluid (air) is injected at ambient temperature (20°C) from the bottom,
flows through the sample, and exits from the top of the cylinder into a tube which is at-
tached to a flowmeter transducer (Honeywell Micro Switch Microbridge Mass Airflow
Sensor AWM3100V). The pressure difference, AP = P, —P,, across the sample is mea-

sured by a pressure transducer (Honeywell Micro Switch Pressure Sensor 142PC05D)

12



at the bottom of the apparatus within the tube (P;) and in some experiments at
the top as well (P,). However, early experiments have shown that P, is very close
to atmospheric pressure and can therefore be assumed to be atmospheric pressure
(101 KPa). Temperature is measured with J-type thermocouples next to the pressure
transducers to enable correction for temperature variations. Different temperatures
can occur as a result of room temperature fluctuations (approximately constant in
the air-conditioned lab) and because of different compressions of air (temperature
increases as pressure increases). However the temperature variations are extremely
small for the induced small pressures (AP = P — Py & P; — Py, and AP, &= 7
PSIG = 48 KPa, usually below 1 PSIG ~ 6.89 KPa) and viscosity variations of air
due to temperature changes are thus minimal.

The air pressure within the sample decreases from the bottom (P;) to the top
(P, ~ atmospheric pressure). The pressure outside the sample, but within the tube,
is constant at P; (Figure 2.3). Therefore the pressure gradient across the tape at
the very bottom of the sample is zero and increases upwards to almost AP,,4;. As
a result, the tape is pressed against the sample due to the pressure difference across
the tape which increases with increasing P;. This setup provides an efficient seal as it
presses the impermeable tape hardest towards the sample when the applied pressure
P, is highest. The seal is tested by inserting an aluminum core in the permeameter
and applying a maximum pressure of 60 PSI. The measured flowrate of zero indicates

an efficient seal.

2.5 Total Porosity (¢;) Measurement

The samples have a cylindrical shape which enables an easy calculation of their
volume V. Total porosity therefore can be calculated when the matrix density p,, (rock

without voids) is known. I determine p,, by powdering rocks to eliminate pore space,

13
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Figure 2.3: Steady state gas permeameter. The cylindrical sample is suspended at
the top of the aluminum tube. Maximum pressure P; is applied below the sample
within the tube. The pressure decreases within the sample and reaches approximately
ambient (atmospheric) pressure P, at the permeameter outlet. The flowrate @ and
the pressure difference AP have to reach a steady state before measurements are
taken. The effects of inertia and compressibility of gases are corrected for. The
Klinkenberg slip effect has not to be taken into account, because the mean-free-path
of the air molecules is signifficantly smaller than the pore space.
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adding water, and weighing the powder-water-mixture. Total porosity ¢; is calculated
by

=1-— 2.1
d)t pmV’ ( 3)

where m is the mass of the core with volume V. The matrix density p,, was obtained
by grinding rock that was leftover from core drilling to eliminate voids. The powder
was then placed in a graduated cylinder (volume = 250 ml +2 ml) and a known
amount of water (determined by weighing) was added. The density of the powder
was then determined by weighing the full beaker. It is necessary to add water, since
a known volume of powder contains an unknown amount of air-filled void space in
between the grains. Filling this void space with a known amount of water (of known
density) enables the matrix density determination. Intercrystalline micropores might
not be completely eliminated during the grinding process. This reduces the matrix
density in Equation (2.13) leading to an underestimation of the total porosity. This
effect is probably more pronounced in the very crystalline (up to holocrystalline)
basalt flow samples (Figure 3.4) than in the cinder cone (scoria) samples (Figure 3.2)
which show a more glassy texture and therefore fewer micropores. The uncertainty

of the total porosity measurement can be estimated by

0 = J (%)2 + (%)2 + (A—VV>2 (2.14)

and is o4, ~ 5%

2.6 Connected Porosity (¢.) Measurement

The connected, also called accesible and effective, porosity is measured using a gas

expansion technique (Figure 2.4). This is done by placing the sample! in a chamber

!The accessible porosity of the core samples is measured with the impermeable tape attached
to the sidewall of the cylindrical samples since this is the configuration used for permeability
measurements.
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Figure 2.4: Air pycnometry: connected porosity measurements. Air pycnometry
measurements are conducted to determine the accesible (connected) porosity of the
samples. A vacuum is applied to chamber A. Then the valve between chamber A
with pressure P, and B (with pressure P,) is opened and the final pressure (Pf) of
the system is recorded to calculate the connected porosity in Equation (2.15).
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of known volume, V4, to which a vacuum is applied. Then a valve is opened and air
enters from a second chamber of known volume, Vg. This is often done with Helium.
I use air as the test gas since the basalt samples have relatively big bubbles, and have
been exposed to air. By comparing the pressure change in chamber A (P;) and B
(P3) before the opening of the valve with the final pressure (Pf) of the total system

after opening the valve, provides the connected porosity

(2.15)

where:

Vs = total volume of the porous sample

Va = volume of the empty vacuum chamber A

Vs = volume of the (ambient P) pressure chamber B

P, = minimum pressure in the vacuum chamber A

P, = pressure in the (ambient P) pressure chamber B

P; = final equilibrium pressure in the system (A + B) with open valve

2.7 Comparison of Total and Connected Porosity

Total porosity measurements are expected to underestimate the true total porosity
because the matrix density value is likely to be too low, especially for very crystalline
basalt flow samples (see Chapter 3). The data points in Figure 2.5 therefore show the
lower bound of total porosity. Measurements of the accessible porosity on the other
hand are more likely to include connected intercrystalline micropores. If all pores are
connected this leads to higher accessible than total porosity values, which cannot be
the case. The data points in Figure 2.5 are therefore expected to plot more to the
right of their current position which in general tends to move the data points onto
the line ¢, = ¢;. All pores appear to be highly connected in vesicular basalts, that is

¢e ~ ¢y (Figure 2.5).
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Figure 2.5: Total versus connected porosity. Accesible porosity appears to be higher
in general than total porosity. An explanation for this result is given in the text. The
uncertainty of ¢, is estimated by Equation (2.14) to be about gy, ~ 5%. Virtually
all pores appear to be connected in vesicular basalts.

2.8 Image Analysis

Image analysis of the pore size and shape distribution is used to quantify the
material’s microstructure. This is important since permeability depends not only on
porosity but also on microstructural parameters like pore shape, pore space connec-
tivity, pathway size, and tortuosity.

Investigations of the samples’ microstructure was studied using thin section and
image analysis techniques. Thin sections give a more qualitative impression of the
predominant structures of a small cross sectional area, whereas image analysis tech-
niques allow quantitative investigations of a larger core cross section. For the latter

I used two different approaches to gain different information: analysis of cross sec-
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tional images first by an image analysis program (NIH Image)? and second by spatial
correlation functions (SCF).

For both image analysis techniques it is necessary to prepare the core cross sec-
tional discs for scanning purposes. The pores are first filled with spray paint to access
very small pores and then with plaster to completely fill large voids. The surfaces
are polished to eliminate surplus paint on non-void rock faces and then spray-painted
with a clear lacquer to enhance the black (rock) and white (voids) contrast. The rock
discs are then directly scanned at 1200 dpi resolution and inverted so that the voids
are black and the rock is white to achieve a binary image. Figure 2.6 shows typical
scanned images of three different kinds of rock samples. Images of all rock samples

are provided in Appendix B.

2.8.1 NIH-Image Analysis

NIH-image is an image analysis program developed by the National Institute of
Health (NIH) widely used to gain quantitative, statistical information about images.
Here it is used to measure pore cross sectional area and pore circumference. The
number of analyzed pores varies from 200 to over 2000 in each image, depending on
the pore size distribution of the particular sample.

Characteristic areas A. for each core were obtained by calculating the median
vesicle area Asg. Figure 2.6 shows typical cumulative curves and Asy values for the
three rock examples.

Relative roundness R,,unq was calculated by dividing the average circumference

squared by the average characteristic area A, of each bubble and then normalizing

2NIH-Tmage (version 1.61b8) of the National Institute of Health (NTH)
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each value by such a value for a circle

P2
AT A,

Riouna = (2.16)

A perfectly circular pore has R,ounga = 1, whereas decreasing roundness is indicated
by increasing Ryounga-values (Ryoung > 1). Figure 2.6 shows typical roundness distri-
butions and values for the three rock types.

Porosities were not determined by the NIH-image analysis technique, because the
total image area of which the pores were analyzed is not easily determined by the
program. Porosity calculations based on image analysis techniques was carried out

by one-point correlation functions (see following section).

2.8.2 Spatial Correlation Functions (SCF)

Spatial correlation functions (SCF) provide a means for the characterization of the
microstructure of a two-phase medium, e.g. rock and pores [Berryman, 1985, 1987]
and have been investigated with respect to permeability calculations using Kozeny-
Carman equations [Carman, 1956; Dullien, 1979; Berryman et al., 1986, 1987; Blair
et al., 1996]. Following the approach by Berryman [1985] and Blair et al. [1996],
I use an indicator function f which is defined to be f(x) = 1 if x is within a pore
space and f(x) = 0 if x is in the rock. The ascii-bitmap images obtained by scan-
ning the prepared core discs contain only ones and zeros for voids and rock matrix
respectively which represents the function f. After transforming the ascii-bmp file
into a MATLAB? readable data file, it is straightforward to do matrix calculations
needed for SCF-operations. I wrote a MATLAB program to generate a a X b-matrix

(a = width, b = height of the image) containing the ones and zeros and to do the

3SMATLAB (R), version 5.2.0.3084, is a numeric computation and visualization software by Math-
Works, Inc.
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Figure 2.6: Comparison of microstructural characteristics of the three sample types.
Determined using the NIH-image analysis technique (see Chapter 2). Aj is the
median cross sectional bubble size and is refered to as the characteristic bubble area
A.. Riounq is the average bubble roundness, where R.,..q = 1 indicates a perfect
sphere and R,ounq > 1 measures distortion from a spherical shape.
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SCF-calculations described below.

One-point correlation function (5;)

The integral of f over the area of the image provides an estimate of the poros-
ity of the sample, assuming that the rock is isotropic [Berryman, 1985, 1987; Blair
et al., 1996]. This integral is also called the one-point correlation function S; and
indicates the probability that any point lies in a pore space [Berryman 1985; Blair
et al. 1996]. Determining the total porosity of a sample by one-point correlation
functions provides only a rough estimate, since it uses only a fraction of the cross
sectional area of the core for the calculation and does not integrate over the whole
core, unlike the “powdering-weighing” method (described above). This problem can
become even more severe, when the rocks are heterogeneous. However I can use the
image analysis method to check the algorithm of the spatial correlation function on

generated images of circles and ellipses and on relatively homogeneous rock samples.

Two-Point Correlation Functions (.S;)

Spatial correlation functions are also useful when they are done on two (S55)
or more (S,,) points. Two-point correlation functions Sy are of special interest here,
because they can be used to determine the specific surface area of a sample [Berryman,
1987]. In combination with S; to calculate the porosity of a sample they are a powerful
technique because porosity and specific surface area can be used in Kozeny-Carman
equations to estimate permeability [Carman, 1956; Dullien, 1979; Berryman et al.,
1986, 1987; Blair et al., 1996] if a formation factor F' is known. The formation factor

is a measure of the tortuosity of the connected pore space [Blair et al. 1996] and can
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sometimes be measured or calculated using a power law
F=¢ ™ (2.17)

found empirically by Archie [1942]. More about Kozeny-Carman equations follows
later (Chapter 4, and Chapter 6).

Sy is defined for isotropic two-component material by Berryman [1985] as the
probability that two points separated by a distance r both lie in the pore space. S
is a two-dimensional autocorrelation function [Blair et al., 1996] and both S; and S,
can be defined in terms of the indicator function f(x) described above [Blair et al.

1996

S1 = (f(x)) = ¢ = 52(0) (2.18)
and

Sa(r) = (fx f(x +1)), (2.19)
where the angle brackets denote volume averaging over all positions x, and r = |r|.

Berryman [1985] provides a discretized version of Equation (2.19) to compute Ss,

1 Imaz jmam

Sa(m,n) = A 3> fijfirmjans (2.20)

2 =1 j=1

where i, = ¢ — M, jmez = b — n, a is the image width, b is the image height,
Ny = iz X jmaz, for distances r = vVm2 +n2 with 0 < m < aand 0 < n < b.
Figure 2.7 shows two-point correlation functions for fully penetrable (short dashed
curve) sphere models (the case of vesicular basalts) and impenetrable (solid curve)
ones (granular material) [after Berryman and Blair, 1986].

The slope of the curve of Sy close to r = 0 is

S4(0) = —Z, (2.21)
[Debye et al., 1957; Berryman and Blair, 1986; Berryman, 1987], where the specific

surface area s is defined as the ratio of the pore-grain interface to the total volume
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r (sphere radii)

Figure 2.7: Two-point correlation functions for the fully-penetratable (short dashed
curve) and the inpenetratable (solid curve) sphere model [from Blair et al., 1996].
The specific surface area s of a material is given by the slope of the line (S5) as r — 0
in Equation 2.21.

of the porous material. In the equivalent channel model [Paterson, 1983] it can be
interpreted as the circumference of the pores divided by the total area of the image.
Note that Equation (2.21) is true for any porous material regardless of particle shape
[Blair et al., 1996], making it a powerful tool for the determination of specific surface
area and therefore potentially for permeability estimation. However, the determina-
tion of s by two-point correlation functions assumes that all pores are connected and
that the image is representative of the fluid flow determining pathway geometries.

The latter condition will be a crucial point later on.
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Chapter 3

Measurements and Observations

In this chapter I describe measurements, obtained by the techniques discussed in
the previous chapter. After introducing several permeability models in the following
chapter, I discuss and interpret these measurements in Chapter 5 and 6.

Table 3.1 provides a summary of measurements, made on the 39 samples. Samples
are classified as scoria (cinder cones), flowl, and flow2 samples; measurements include
total porosity ¢, porosity determined by image analysis ¢image, connected porosity ¢.,
measured permeability k, specific surface area s, characteristic bubble area A,, bubble
roundness R ounq, and the resolution used for scanning procedures.

Typical measured permeabilities of the basalt samples range from 107'7 m? to
1071 m2. Thus the highest measured permeabilities of k ~ 1071° m? are comparable
with measured permeabilities of very young, unaltered, dike-free Hawaiian lava flows,
which show permeabilities of k£ ~ 107'° m? [e.g. Williams et al., 1973; Ingebritsen et
al., 1993]. These permeabilities, however, represent the overall horizontal aquifer per-
meability, including rubble zones, fractures and lava flow layering, which introduces
some anisotropy [Ingebritsen et al., 1993]. Therefore the total aquifer permeabilities
are expected to be higher than the matrix permeability (see Chapter 1). My mea-
sured permeabilities are also in good agreement with Freeze and Cherry [1979, p. 29]

who report a permeability of 1074 m? < k < 10~® m? for vesicular basalts.
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Table 3.1: Measurements: total porosity ¢;, porosity determined by image anal-
ysiS ¢ima, connected porosity ¢., measured permeability k, specific surface area s,
characteristic bubble area A., bubble roundness R,,, and the resolution res, used for
scanning procedures.

| core | type | & [Gim [ ¢ | K | s | Ao | Reou| res |
l | | &l [ (%] | %] | m* | 1/m [mm][ | dpi |
301 | flow2 [ 18.0]17.2]19.5| 1.1 x10 2 [0.612 x10% | 4.13 | 2.02 | 1000
302 | flow2 | 16.9 ] 18.2[17.6 | 1.2 x107 | 0.705 x10% | 7.15 | 2.26 | 800
303 | flow2 | 18.1 | 28.1]19.9 | 2.6 x107 | 0.836 x10° | 9.77 | 2.01 | 900
304 | flow2 | 18.5|22.7]21.5]6.3 x10~™ | 0.835 x10° | 6.86 | 2.02 | 800
30101 | flow2 | 17.8 [ 17.2 | 19.6 | 1.2 x10713 | 0.612 x10% | 4.13 | 2.02 | 1000
30102 | flow2 | 18.2 ] 17.2]19.5| 3.9 x107'2 | 0.612 x103 | 4.13 | 2.02 | 1000
30103 | flow2 | 16.4 | 17.2]19.5 | 3.3 x10 13 | 0.612 x10° | 4.13 | 2.02 | 1000
402 | flow2 | 10.5 | 14.3 | 16.0 | 1.6 x10~ "3 | 1.18 x10% | 1.28 | 1.92 | 1200
501 | scoria | 46.4 | 45.5 | 47.8 | 1.4 x10~ 13 | 2.66 x10° | 3.50 | 1.83 | 1100
50101 | scoria | 48.8 | 45.5 [ 47.8 | 2.0 x10~13 | 2.66 x10° | 3.50 | 1.83 | 1100
50102 | scoria | 44.2 | 45.5 | 47.8 | 9.1 x10~" | 2.66 x10% | 3.50 | 1.83 | 1100
601 | flowl | 47.252.0]46.6 | 5.1 x10 2| 2.44 x10% | 3.63 | 1.63 | 1100
701 | flowl | 49.8 | 40.6 | 49.1 | 2.3 x10~13 | 2.30 x10% | 7.41 | 1.53 | 800
1001 | flow2 | 19.4 [ 16.9 | 21.1 | 5.3 x10~'2 | 1.71 x10° | 0.98 | 2.07 | 1200
1301 | flow2 | 14.3 [ 18.1 [ 10.2 | 1.0 x10~" | 0.689 x10% | 6.74 | 2.28 | 800
1401 | flow2 | 26.329.5 | 27.0 | 3.3 x10°1 [ 0.923 x103 | 9.14 | 1.92 | 700
1402 | flow2 | 23.2 276 25.4 | 1.1 x1072 [ 0.868 x10° | 7.83 | 1.96 | 800
1404 | flow2 | 23.1 [ 33.1 | 23.8 | 1.7 x10 2 | 0.876 x10% | 9.46 | 1.96 | 700
1601 | flowl | 41.0 | 38.4 | 44.4 | 9.3 x10 13 | 1.26 x10% | 19.2 | 1.81 | 600
1602 | flowl | 38.9 | 44.3 [ 44.7 2.1 x10 2| 1.31 x10% | 32.5 | 1.73 | 400
1902 | flow2 | 22.5 | 32.6 [ 25.3 | 1.4 x10~'" | 0.931 x103 | 7.06 | 1.96 | 800
2001 | scoria | 75.4 | 69.8 | 78.9 [ 9.4 x10~™ | 1.44 x10% | 47.6 | 1.59 | 400
21012 | flowl | 42.8 | 45.8 | 45.3 | 7.6 x10~" | 0.889 x10° | 7.63 | 1.64 | 800
2102 | flowl | 35.234.034.7]1.0 x10~™ [ 0.876 x103 | 7.63 | 1.64 | 700
2201 | flowl | 45.9 | 40.3 | 46.6 | 3.7 x10~'2 | 0.758 x10% | 18.6 | 1.76 | 500
2301 | scoria | 66.6 | 63.0 | 69.0 | 1.4 x10 ' | 1.96 x10° | 22.8 | 1.62 | 600
Table 3.1:
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Table 3.1: (Continued)

[ core [type | & [bim [ & | k& [ 5 | A [Reou| res |
H | [ %] [ Rl | %] [ m® [ 1/m [mm]| [ dpi|
2401 | scoria | 67.0 | 64.0 | 70.4 | 2.8 x10 2 | 2.25 x10% | 11.5 | 1.68 | 700
2501 | flowl | 35.3|34.2[36.7] 1.0 x10 3| 3.88 x10% | 0.51 | 1.51 | 1200
2502 | flowl | 36.5 | 34.2]42.1 2.4 x10~3 | 3.88 x10% | 0.51 | 1.51 | 1200
2601 | scoria | 66.0 | 62.9 | 70.2 | 5.2 x10~"2 | 3.27 x10° | 13.0 | 1.87 | 600
2801 | scoria | 53.6 | 54.5 | 57.4 | 1.5 x10~"2 | 2.30 x10° | 6.03 | 1.61 | 900
2802 | scoria | 55.7 | 54.5 [ 60.4 | 7.6 x10~™ | 2.30 x10% | 6.14 | 1.61 | 900
2803 | scoria | 56.8 | 64.4 | 58.4 [ 9.1 x10~"® | 1.40 x10% | 14.8 | 1.55 | 600
3101 | flowl | 41.5]30.9]43.0[2.9 x10 2| 0.843 x10% | 11.0 | 1.63 | 700
3201 | flowl | 45.4 | 40.9 | 46.5 | 2.0 x10 13 | 0.614 x10% | 23.4 | 1.63 | 500
320101 | flowl | 43.2 | 40.9 | 44.6 | 2.0 x10 3 | 0.614 x103 | 23.4 | 1.63 | 500
320102 | flowl | 46.7 | 40.9 | 48.3 | 2.4 x10 13 | 0.614 x103 | 23.4 | 1.63 | 500
3301 | flowl | 46.4 | 41.2 | 47.0 | 1.6 x10~" | 0.846 x10°% | 20.6 | 1.63 | 600
330101 | flowl | 46.3 | 41.2 [ 47.1 [ 4.0 x10~™ | 0.846 x10° | 20.6 | 1.63 | 600

The total macroporosity ranges from 10 to 80%. Microporosity is not included
in this value, although it can be observed in thin sections of some basalt flow sam-
ples (Figure 3.4). Samples having 0 % macroporosity still show microporosity and

2. This “micropermeability” is prob-

related permeabilities on the order of 107'7 m
ably due to intercrystalline micropores. In the following I am addressing how the
abundance, structure and shape of macropores governs the permeability. Therefore
the porosity due to micropores and the resulting “micropermeability” are neglected
and assumed to be zero when no macropores are abundant.

A plot of total porosity versus permeability for all samples shows a diagonal lower
bound, a variability of k£ over three orders of magnitude for a given porosity ¢ and
a strong dependence of permeability on the abundance of macropores (Figure 3.1).
A total of 62 samples were examined, but 20 samples show signs of weathering and

secondary mineralization (Diamond Crater and Cow Lake samples) or fractures and

3 samples do not contain macropores (see Figure 3.1).
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Figure 3.1: ¢-k relationship (not normalized, all samples). ¢-k relationship of the 42
basalt samples. A diagonal lower bound on permeability can be observed. Typical
permeability values are in the range 10717 m? < k£ < 107'* m?. The variability of &
for a given porosity ¢ is about three orders of magnitude. No distinct ¢-k relationship
can be observed, because no microstructural parameters are taken into account. The
three samples with a distinctively lower permeability of k ~ 107'” m? and a porosity
of ¢ ~ 0% show no macropores. This indicates that the high permeabilities for
vesicular basalts are governed bu the macropores. Porosity and permeability due to
micropores are neglected hereafter.
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As is commonly observed, permeability values vary over a range of about 4 orders
of magnitude for a given porosity. For comparisson Blair et al. [1996] observe over 3
orders of magnitude variation of £ within a narrow porosity range of a few percent in
the same sandstone. In general, it is expected that the permeability range increases
with increasing heterogeneity of the sample [Blair et al., 1996].

The samples used here were taken from two different rock types, basaltic andesite
flows and cinder cones. Because these reflect different emplacement mechanisms, they
are therefore distinguished in the following discussion.

In the Oregon Cascades one can observe lava flows and cinder cones next to, and
on top of, each other. This indicates the possible change of one type of eruption
into the other (e.g. Lava Butte Cinder Cone and Lava Butte flow). This is currently
observed on Hawaii (e.g. Wolfe et al., 1989). The emplacement mechanism probably
depends on lava extrusion velocity which in turn is a function of vent geometry, lava
flux, and magma chamber dynamics causing pressure variations.

The scoria of the cinder cones is formed during high velocity fountain eruptions
[Mangan and Cashman, 1996] and usually chilled rapidly, mostly while it is still in the
air, forming a glassy rock matrix (see Figure 3.2). The low viscosity, u ~ 102 PaS, of
the basaltic lava [Bottinga et al., 1972], high surface tension of the basalt-air interface,
o ~ 0.35 N/m [Khitarov et al., 1979; Walker et al., 1981], and the small vesicle radii
of r & 1 mm, lead to low capillary numbers C'a. Assuming a bubble deformation
from an aspect ratio of 1 to 2 (strain = 1) within 10 seconds yields a strain rate of

¢ = 107! s71. The capillary number is therefore on the order of

T L€ 1
Ca=—"—~ —. 3.1
T T30 (3:-1)

The distortion of a sphere to an ellipsoid is linearly proportional to C'a for low C'a, and

proportional to Ca® for high capillary numbers [Taylor, 1932]. The Capillary number
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Figure 3.2: Thin section image of a scoria sample. Various magnifications of a thin
section image of a scoria sample (b020-2,3) showing connected, but not collapsed
bubbles. The interbubble aperture is much smaller than the bubbles themselves.
black: bubbles and crystals (mostly feldspar), white: glassy rock matrix.

characterizes the relative importance of viscous stresses compared to surface tension
stresses. Because C'a < 1, surface tension dominates and bubbles remain subspher-
ical (Figure 3.2) despite high bubble connectivity (Figure 2.5). Rapid quenching of
the lava allows the preservation of the subspherical shape because relaxation of the
thin film in between bubbles is impeded. Interbubble aperture sizes therefore remain
small. Reaching the ground, the already quenched lava cannot deform in a ductile
style but breaks brittly into pieces of scoria of various sizes. Some breakup might

occur in the air as well.
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In contrast to cinder cone samples, the flow samples are produced by lower velocity
eruptions, where the lava is not dispersed in the air but forms relatively thick flows.
The top and, to a lesser degree, the bottom of the flows cool and insulate the middle
parts of the flow [e.g. Lipman et al., 1987; Crisp et al., 1994]|. This leads to slower
cooling rates allowing ductile deformation of the rock matrix and the bubbles as a
result of shear flow.

The slow cooling rate of the flows allows considerable deformation to occur. The
accumulated deformation results in increasing bubble elongation with increasing dis-
tance from the vent accompanied by an increase in crystallinity. Although this is
a continuous process, I divide the flow samples in two distinct categories, based on
their microstructure.

The first category called “flowl” samples (Figure 3.3), represents samples that
probably cooled relatively close to the vent and therefore show a predominantly glassy
matrix surrounding ellipsoidal bubbles. The bubbles are elongated in flow direction.
Flowl samples contain few or no micropores since intercrystalline space is mostly
filled with glass.

The second category called “flow2” samples (Figure 3.4) represents samples that
were collected further away from the vent, and show a large degree of vesicle elonga-
tion and sometimes a diktytaxitic texture. The slow cooling rates of flow2 samples,
indicated by large crystals abundances, allow relaxation of the thin film between bub-
bles. The drainage of the film increases the permeability, allows degassing, and leads
to bubble collapse perpendicular to bubble elongations.

Roundness calculations were performed using Equation (2.16). Scoria and flowl
bubbles are systematically rounder than flow2 bubbles (Figure 3.5) reflecting bubble
collapse in flow2 samples. Table 3.2 is a summary of the three vesicular basalt types

and the main characteristics important for later discussions. Figure 3.6 shows the
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Figure 3.3: Thin section image of a flowl sample (b021-02) showing connected, but
not collapsed bubbles. The interbubble aperture is relatively narrow in many cases
(B), but shows signs of widening (A) due to slower cooling rates and film drainage.
This allows enhanced permeability (see text). Micropores are largely absent. Black:
bubbles and crystals (mostly feldspar). White: glassy rock matrix.
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Figure 3.4: Thin section image of a flow2 sample. Assemblage of thin section im-
ages of a flow2 sample (b013-01) showing extremely well-connected, and collapsed
bubbles. The interbubble aperture is not much smaller than the bubbles themselves.
Micropores indicate a diktytaxitic texture. Some connections appear to be collapsed.
Black: bubbles and crystals (mostly feldspar). White: glassy rock matrix.
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Figure 3.5: Roundness values (Ryoung) for scoria and basalt flow bubbles. Ryoung = 1
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In contrast bubbles in flow2 samples are less round which is indicated by higher R ,unq
values.

Table 3.2: Characteristics of the three basalt sample types

H ‘ bubble shape ‘ matrix texture ‘ formation ‘ symbol H

scoria | subspherical | glassy fountain eruption | filled

not collapsed | no micropores (cinder cone) circles
flowl | ellipsoidal glassy close to the vent | open

not collapsed | no micropores squares
flow2 | elongated ~ holocrystalline distal from vent | filled

collapsed micropores, dyktitaxitic triangles

Table 3.2:
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same data as Figure 3.1, but subdivided into those three categories. One can see that
the scoria samples plot approximately on a curve showing increasing permeability for
increasing porosity whereas the flow samples lack such a ¢-k relation. This increase
in k£ for an increase in ¢ was also noticed in pumice that was not highly deformed
(Katharine Cashman, pers. com, 1998). Some models and ideas are introduced in the
following Chapter in order to gain more information about ¢-k relation and about the
influence of porosity, microstructure and average bubble sizes. Interpretation of the
measurements and observations in this Chapter follow then in Chapter 5. Chapter 6
discusses the possibility of calculating the permeability of vesicular materials using

Kozeny-Carman equations and image analysis techniques.
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This indicates a pronounced dependence of a ¢-k relationship on the microstructure
of the material investigated.
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Chapter 4

Permeability Models

This chapter deals with models that can be used to estimate permeability. Such mod-
els also provide a basis for interpreting the permeability measurements of Chapter 3
and to gain an understanding of the relationship between a material’s microstructure
and its permeability. Actual interpretations of measurements are provided in Chap-
ter 5 using the percolation theory introduced in this chapter. Chapter 6 then deals
with permeability estimates, based on the Image-Analysis-Kozeny-Carman model also
introduced in this chapter.

As mentioned in the introduction, there exists a long history of modeling a poros-

ity permeability relations that goes back to Rose [1945] who proposed that
ke~ ¢™, (4.1)

where m is an exponent that is typically determined empirically. This power law
relationship is similar to Archie’s law, Equation (4.8), and percolation theory models
which will be discussed in section 4. However, early on it was recognized that there is
no simple relationship between porosity and permeability [Cloud, 1941]. Microstruc-
tural parameters, accounting for pore space connectivity and pathway tortuosity,
have to be taken into account as well. Sahimi [1995, p. 6] notes that the continuum

models used here are not well-suited when interconnectiveness of pores play a major
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role. However, these models are simpler to apply as they do not require the large
computations necessary for discrete models which would be more appropriate when
pore space connectiveness is important. Figure 2.5, however, shows that virtually all
pores in cinder cones as well as in basalt flows are connected justifying the use of a
continuum model.

Since the work of Kozeny and Carman [Carman, 1956; Dullien, 1979] there have
been numerous reasonably successful attempts to find a model that can estimate the
fluid permeability for a porous material when microstructural information is avail-
able. Roberts et al. [1997] provide a recent comparison of laboratory, analytical, and
imaging techniques for estimating permeability in porous media. Blair et al. [1996]
compare the Katz-Thompson [1986] approach invoking a combination of percolation
theory concepts [Stauffer, 1985; Sahimi, 1994] with mercury injection porosimetry
with the A-parameter method of Johnson et al. [1986] and their own image process-
ing method that is used to obtain values for Kozeny-Carman equations. Percolation
theory can also be used in power law relations to estimate fluid permeability [Sahimi,
1994, 1995]. The two approaches followed in this thesis are the percolation the-
ory method and the image-analysis-Kozeny-Carman-equation method introduced by

Berryman et al. [1987] and Blair et al. [1996].

4.1 Katz & Thompson Model

Katz and Thompson [1986] use a formula for estimating permeability that can be

written as
2
lg

k= 506F

(4.2)

where [. is a critical pore diameter that indicates the smallest of the largest pores
that are assumed to contribute to the percolation network. Pores smaller than [,

are assumed to conduct a significantly smaller volume of fluid and can therefore be
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neglected. F' is the formation factor determined by electrical conductivity measure-
ments (ratio of the pore fluid conductivity, 0., to the effective conductivity of a
porous material saturated with that fluid, o, i.e., F = 0,/0). The constant 1/226
is a theoretical value that, among other things, depends on the pore geometry. The
characteristic length [, is determined by the mercury porosimetry injection method!.
In Equation (4.2) permeability is directly proportional to the characteristic length

scale squared and inversely proportional to the formation factor.

4.2 Johnson Model

Johnson et al. [1986] introduce a characteristic length A that can be determined

by electrical conductivity measurements of porous materials. A is given by

J, [E[?dV

A=2
Js |E|2ds’

(4.3)

where E is the local electrical field, V' the pore volume and s the surface area. If
the pores are smooth, for example cylindrical tubes, then the local electrical field is
constant and Equation (4.3) reduces to A = 1/s = [, where s is the specific surface
area (surface area per unit volume). If the pore geometry is highly variable, the local
electrical field E varies and the regions with the highest E will have the biggest impact
on both A and the fluid permeability and electrical conductivity. The permeability

is determined by:
A? 12
=— =X 4.4
8F 8F (44)

Again the permeability is directly proportional to the characteristic length [. squared

and inversely proportional to the formation factor F'.

1T don’t use this method, because it is too unhealthy.
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4.3 Image-Analysis-Kozeny-Carman (IAKC)
Model

The image analysis method by Berryman et al. [1987] and Blair et al. [1996]
used in combination with Kozeny-Carman equations [Carman, 1956; Dullien, 1979
is the method I use in this thesis. It has one signifcant advantage advantage over
the other methods introduced above, namely that permeabilities can be estimated
from images of the rock texture. In addition, measurements are inexpensive and can
be quickly made because they can be done with standard Personal Computers. The

general form of a Kozeny-Carman relation is
k=—, (4.5)

where £ is the permeability, ¢ the porosity,  the hydraulic radius and ¢ a constant
reflecting the pore geometry. For circular tubes, ¢ = 2, and for flat cracks, ¢ = 3
[Berryman et al., 1987]. Paterson [1983] and Walsh and Brace [1984] introduced a
form of the Kozeny-Carman relation that reflects flow in a porous medium by an
arrangement of parallel cylindrical pores called the equivalent channel model:

2
- c;i—sz’ (4.6)
where s is the specific surface area, F' the formation factor, ¢ = 2 for circular tubes
and ¢ again the porosity. Although the equivalent channel model is a geometrical
simplification of a more complex real rock, it may in some cases be appropriate for
vesicular basalt flow samples where vesicles are ellipsoids elongated in flow direction
and thus approach a cylindrical shape. For this to hold true, however, the bubbles
must be connected. This constraint turns out to be crucial for permeability estima-

tions in vesicular materials and is discussed in Chapter 6. It is therefore necessary

to carry out image analysis on cross sections perpendicular to the averaged longest
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axis of the ellipsoids. When cores are drilled from small boulders I choose the long
axis of the core to be as parallel as possible to the average elongation direction of the
bubbles in order to satisfy the above mentioned condition. The characteristic length

for Equation (4.6) can be defined by [ = ¢/s, so that (4.6) can be written as

l2

where the formation factor F' can be measured (electrical conductivity, mercury in-
jection porosimetry) or can be estimated using the empirical law found by Archie
[1942]

F=o"™. (4.8)

The exponent m is subject to discussion, but has been estimated by Archie [1942]
to be between 1.8 and 2 for consolidated sandstones and by Brace [1977] and Wong
et al. [1984] to be about 2 for rocks. Values of m should be 1.5 for an isotropic
medium containing spherical particles (impermeable spheres) and increase (m > 1.5)
for nonspherical particles [Archie, 1942; Sen et al., 1981]. In the calculations presented
here I use either a constant exponent of m = 2 in Equation (4.8) or an exponent
increasing from 1.5 to higher values with decreasing bubble roundness.

As noted by Blair et al. [1996], it is obvious that in Equations (4.7), (4.4) and
(4.2), the permeability is directly proportional to the characteristic length squared
and inversely proportional to the formation factor. Blair et al. [1996] further expect
that the characteristic length is the same in all three methods, since there can be
only one pertinent characteristic length in the permeability estimation problem for
homogeneous material.

When determining the specific surface area s using two point correlation functions
it is crucial to use the right image magnification [Berryman et al., 1987]. Berryman

et al. [1987] point out that image processing techniques do not measure the true
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specific surface area of the investigated material, but instead smooth the walls of
pores because of the necessary image discretization. Specific surface areas obtained
by this method underestimate more realistic surface area measurements using gas
absorption techniques. However they note that the Kozeny-Carman relation is itself
only an approximation, representing smooth-walled cylinders and approximations of
tortuosity. Therefore they state that it is exactly this smooth wall approximation
provided by image analysis that is appropriate to use as the specific surface area in
Kozeny-Carman equations. Further they suggest that the correct magnification is
achieved when a typical correlation length (radius of an average bubble) comprises
approximately 100 pixels (discrete picture elements). This ensures that the pore
radius is measured to an accuracy of 1 % which leads to a maximum permeability
estimation error of 4 % [Berryman et al., 1987].

Magnifications have to be chosen carefully, especially if correlation functions are
determined for granular material, because fluids flow around impermeable spheres and
pores are thin necks. The size of these necks can easily be under- or over-estimated
by improper magnifications. Too high magnifications lead to overestimations of the
specific surface area with respect to their use in Kozeny-Carman equations [Berryman
et al., 1987] and therefore to underestimations of the permeability. In the case of
vesicular basalts, however, the pores have an ellipsoidal shape which is not as sensitive
to size measurement errors due to magnification. This can be observed in Figure 4.1a,
which shows calculated specific surface areas s for different magnifications (resolution
from 100 to 1200 dpi) of the exact same image. Magnification is expressed in pixels
per characteristic bubble cross sectional radius. The calculated specific surface area
stays approximately constant for resolutions (magnifications) larger than a resolution
of 40 pixels per characteristic bubble radius. Specific surface areas determined by

resolutions significantly below 40 pixels per characteristic bubble radius are too small
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(Figure 4.1a).

This result differs from the measurements Berryman at al. [1987] made for Berea
sandstone where the specific surface area increases constantly for increasing, low mag-
nifications (Figure 4.1b). The highest magnification shown in Figure 4.1b provides
an estimate of the smoothed image specific surface [Berryman et al., 1987].

My result of approximately constant specific surface area for vesicular basalt at
different resolutions (> 40 pixels per bubble radius) is used in the following as a
verification for the choice of resolution for the individual samples. It is not necessary
to increase the resolution above the critical resolution for a given sample which helps
to reduce calculation times. The characteristic bubble radius r, was determined using
the characteristic bubble area A., assuming a circular shape so that A, = 7r2. r,
then can be used to determine the critical resolution (in dpi) to which 100 dpi were
added and then rounded to the next higher hundred-value (see Table 4.1). The
actual fluid flow through penetratable overlapping spheres is mainly determined by
the narrow aperture sizes of the overlapping spheres. Therefore specific surface area
should ideally be measured on those aperture sizes exclusively and not averaged over
the complete bubble network.

Two point correlation functions are very sensitive to an anisotropy shown by the
analyzed images. Figure 4.1 shows the specific surface area for one image (Figure 4.2)

of a specific sample (b032-01) determined by:

e choosing second point in x-direction only
e choosing second point in y-direction only
e choosing second point for various x and y directions

It can be observed that the image has an anisotropy expressed by a slight bubble

elongation in the y-direction (Figure 4.2), which results in smaller specific surface
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Figure 4.1: Resolution effect on specific surface area s in (a) vesicular materials
and in (b) granular materials, determined by two-point correlation functions. In
vesicular materials the determined specific surface area stays approximately constant
for resolutions greater than 40 pixel per characteristic bubble radius. Two-point
correlation function calculated in xy-direction combined (solid line), x-direction only
(dashed line) and y-direction only (dotted line) (see also Figure 4.2). By contrast, in
granular materials (b, from Berryman et al. 1987) a continuous increase in specific
surface area can be observed.
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X

Figure 4.2: Image used for Figure 4.1a

values for calculations in this direction.

This anisotropy is due to the fact that it is not always possible to drill the cores
exactly parallel to bubble elongations. Bubbles in shear flows also do not have circular
cross sections [e.g. Kennedy et al., 1993]. These bubbles may have elliptical cross
sections which will show up as specific surface area anisotropy, as discussed above. I
accounted for this effect by calculating the two-point correlation function by varying
directions between the two points as combinations of x and y (solid line in Figure 4.1a).

The basalt samples were scanned at resolutions varying from 500 to 1200 dpi
depending on A.. This resolution is sufficient for most of the samples, because they
show relatively large average vesicle sizes. Nine samples, however, contain very small
vesicles for which a higher scanning resolution (up to over 4000 dpi) than 1200 dpi
would have been desirable, but is not available to me at this point. A larger error
in permeability calculations has to be expected for those samples. Lower resolutions
are likely to underestimate the specific surface area and therefore overestimate the
permeability of a medium. A solution to this problem could be to use thin sections
instead of cores for the image analysis. Images obtained from thin sections using

crossed polarizers have to be thresholded in an image processing program in order to
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obtain a pure black and white image. This procedure, however, is more subjective
than the bitmap scanning process since a threshold value has to be chosen to separate
vesicles from rock matrix in the image.

For each sample, I determined porosity using S;, Equation (2.18), and specific
surface area s using Equation (2.21), where Sy was determined by Equation (2.19) in
its discretized form, Equation (2.20). I calculated expected permeabilities by using
formation factors determined by Equation (4.8) and compared these with measured
values and with percolation theory models (see Chapter 6).

Table 4.1 provides the data used to calculate permeability, using the IAKC model.
The obtained permeability values are listed as well as the measured permeabilities

for comparisson.

4.4 Percolation Theory: The Fully Penetratable
Sphere Model

Percolation theory ideas can also be used to estimate permeabilities for given
porosities. An introduction to percolation theory is provided by Stauffer [1985], gen-
eral applications are described by Sahimi [1994], and applications of percolation the-
ory to flow in porous media are presented in Sahimi [1995]. In the following I will
concentrate on the aspects of percolation theory related to fluid percolation through
a porous medium, a process that is in some ways similar to electrical conduction
in a network of conductors. This analogy leads to the development of permeabil-
ity estimation methods involving among other parameters (porosity, tortuosity, pore
space connectedness) the measurement of electrical conductivity of a porous non-
conducting material that is filled with a conducting fluid [Katz et al., 1986]. However

a porosity-permeability power law relation can be investigated even if no microstruc-
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Table 4.1: Calculated and measured permeability and input data: total porosity (¢;),
connected porosity (@.), specific surface area (s), resolution (res), used for scanning
procedures, formation factor F', measured permeability (k,,) and calculated perme-
ability k..

H core ‘ type ‘ o 0} ‘ s ‘ res ‘ F ‘ ko k.
| | %] | %] | 1/m | dpi | m? m?
301 | flow2 | 18.0 | 19.5] 0.612 x10% | 1000 | 28.4 | 1.1 x10 2 | 1.6 x10 %
302 | flow2 | 16.9 | 17.6 | 0.705 x10% | 800 | 33.6 | 1.2 x10 ™ | 8.9 x10 1°
303 | flow2 | 18.1 | 19.9 | 0.836 x10% | 900 | 27.7 [ 2.6 x10 3 | 9.3 x10 10
304 | flow2 | 18.5 | 21.5 ] 0.835 x10% | 800 | 25.0 [ 6.3 x10 3 | 1.1 x10 %
30101 | flow2 | 17.8 | 19.6 | 0.612 x10% | 1000 | 28.6 | 1.2 x10="3 | 1.6 x10~%
30102 | flow2 | 18.2 | 19.5 ] 0.612 x10% | 1000 | 28.1 [ 3.9 x10~"2 | 1.7 x10~%
30103 | flow2 | 16.4 | 19.5 | 0.612 x10% | 1000 | 31.0 | 3.3 <1073 | 1.4 x10~%
402 | flow2 | 10.5] 16.0 | 1.18 x10% | 1200 | 57.0 | 1.6 x10~™ | 1.1 x10~1°
501 | scoria | 46.4 | 47.8 | 2.66 x103 | 1100 | 4.50 | 1.4 x10 3 | 3.5 x10 %
50101 | scoria | 48.8 | 47.8 | 2.66 x10% | 1100 | 4.28 [ 2.0 x10 ™ | 3.8 x10 %
50102 | scoria | 44.2 | 47.8 | 2.66 x10% | 1100 | 4.73 [ 9.1 x107™ | 3.2 x10~%
601 | flowl | 47.2 ] 46.6 | 2.45 x10% | 1100 | 4.55 | 5.1 x1072 | 4.0 x10™%
701 | flowl | 49.8 | 49.1 | 2.30 x10% | 800 | 4.09 | 2.3 x10~* | 5.7 x10™%
1001 | flow2 | 19.4 | 21.1 | 1.71 x10® | 1200 | 24.4 | 5.3 x10 2 | 2.9 x10 10
1301 | flow2 | 14.3 | 10.2 | 0.689 x10% | 800 | 66.6 | 1.0 x10~™% | 2.4 x10~1°
1401 | flow2 | 26.3 [ 27.0 | 0.923 x10% | 700 | 14.1 | 3.3 x10~" | 3.0 x10~%
1402 | flow2 | 23.2 | 25.4 | 0.868 x10% | 800 | 16.9 [ 1.1 x10 2 | 2.3 x10
1404 | flow2 | 23.1 | 23.8 | 0.876 x10% | 700 | 18.2 | 1.7 x107"2 | 2.0 x10~%
1601 | flowl | 41.0 | 44.4 | 1.26 x10% | 600 | 5.49 | 9.3 x107*% | 1.1 x107%8
1602 | flowl | 38.9 | 44.7 | 1.31 x10® | 400 [ 5.72 [ 2.1 x107 ™% | 8.9 x10~%
1902 | flow2 | 22.5 | 25.3 | 0.931 x10% | 800 | 17.5 | 1.4 x10 ** | 1.9 x10 %
2001 | scoria | 75.4 | 78.9 | 1.44 x10% | 400 | 1.68 | 9.4 x10 2 | 8.6 x10 8
21012 | flowl | 42.8 | 45.3 | 0.889 x10% | 800 | 5.15 | 7.6 x10~*3 | 2.4 x10~08
2102 | flowl | 35.2 | 34.7 | 0.876 x10% | 700 | 8.19 | 1.0 x10~'* | 9.7 x10~%
2201 | flowl | 45.9 | 46.6 | 0.758 x10% | 500 | 4.68 | 3.7 x10~'2 | 4.0 x107 %8
2301 | scoria | 66.6 | 69.0 | 1.96 x10% | 600 | 2.18 | 1.4 x10~'" | 2.7 x107%®
Table 4.1:
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Table 4.1: (Continued)

| core | type | & | o | s | tes | F | kum k. |
u - (I tm | dpi| m? m |
2401 | scoria | 67.0 | 70.4 | 2.25 x10% | 700 | 2.12 | 2.8 x10 2 | 2.2 x10 %8
2501 | flowl | 35.3]36.7] 3.88 x10% | 1200 | 7.72 | 1.0 x10 3 | 5.6 x10 10
2502 | flowl | 36.5 | 42.1 | 3.88 x10% | 1200 | 6.48 | 2.4 x10~ | 7.9 x10~1°
2601 | scoria | 66.0 | 70.2 | 3.27 x10% | 600 | 2.16 | 5.2 x107*2 | 1.0 x107%
2801 | scoria | 53.6 | 57.4 | 2.29 x10% | 900 | 3.25 | 1.5 x10~*2 [ 9.0 x10~%°
2802 | scoria | 55.7 | 60.4 | 2.29 x10% | 900 | 2.97 | 7.6 x10~" | 1.1 x107%
2803 | scoria | 56.8 | 58.4 | 1.39 x10% | 600 | 3.01 | 9.1 x10~* | 2.8 x107%
3101 | flowl | 41.5]43.0 ] 0.843 x10% | 700 | 5.60 | 2.9 x10 2 | 2.2 x10 %8
3201 | flowl | 45.4 | 46.5 ] 0.614 x10° | 500 | 4.74 | 2.0 x10 3 | 5.9 x10 %8
320101 | flowl | 43.2 | 44.6 | 0.614 x10% | 500 | 5.19 | 2.0 x10 3 | 4.9 x10 %8
320102 | flowl | 46.7 | 48.3 | 0.614 x10% | 500 | 4.43 | 2.4 x10 3 | 6.8 x10 %8
3301 | flowl | 46.4 | 47.0 | 0.846 x10% | 600 | 4.59 | 1.6 x10~" | 3.3 x107%
330101 | flowl | 46.3 | 47.1 | 0.846 x10° | 600 | 4.59 | 4.0 x10~™ | 3.3 x107 %8

tural parameters are given. The relationship is described by

k(d)) = C(¢ - qbcr)“a (49)

where C determines the magnitude of the estimated permeability. As mentioned in
the introduction to this chapter, it is clear that in addition to porosity, microstructural
parameters have to be taken into account when permeability values are estimated.
The simple power law relation (4.9), however, does not include any microstructural
parameters like formation factor or a characteristic length scale (see Chapter 4 and
Chapter 6), and has therefore to be scaled to the magnitude of the measured data
one wants to fit, using the constant C to replace these parameters. C' has to be
determined empirically.

The power law relation can hold true only for porosity values above, but still close
to, the critical porosity ¢... I will address this issue in Chapter 5 where I interpret
the divergence of permeability measurements from the theoretical curve obtained by

Equation (4.9), by mainly qualitative microstructural observations. I then employ a
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Figure 4.3: Spheres form a percolation pathway in the fully penetratable sphere model
only if the critical porosity ¢, ~ 30% is exceeded.

more quantitative approach in Chapter 6 using the TAKC model.

The central idea in the application of percolation theory to permeability is that
there has to be a minimum porosity below which no connected pathway for a fluid
can exist. Imagine an impermeable cube of side length L. If permeable spheres with
variable radii r, such that r < L, are randomly placed within the cube, it is necessary
to add spheres until overlapping spheres form a connected pathway from one side of
the cube to the other (see Figure 4.3).

The porosity ¢ can then be determined and is denoted as the critical porosity
¢., or more generally the percolation threshold, the minimum porosity at which a
pathway exists. It is clear that several calculations have to be carried out under same
conditions in order to obtain an average value for such a percolation threshold. I
wrote a C-program that determines critical porosities in two (2D) and three (3D)
dimensions. The permeable objects used in these computer models are circles and

ellipses in 2D and spheres and axisymmetric ellipsoids in 3D (Figure 4.3).
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Figure 4.4: Critical porosity (percolation threshold) for the 2D disc model. Error
bars are standard deviations based on 20 simulations. Calculations using a smaller
radius have a smaller uncertainty but do not change the critical porosity value itself.
The critical porosity is ¢.. &~ 68%. r is the disc radius, and L is the sidelength of the
lattice.

4.4.1 Determination of Percolation Thresholds (¢.,)

2D-Disc (Circle)

I carried out several calculations with variable radii? such that 0.01 < T < 0.2, where
L is the sidelength of the continuous lattice and r is the radius of the object. In
addition, calculations were carried out using two different radii arbitrarily. Results
show that a decrease in radius decreases the uncertainty for the critical porosity
determined by averaging several calculations. These calculations show, however, that
different radii do not change the critical porosity value itself (Figure 4.4) even if two
different radii are randomly used within the same simulation.

As a result, from this point forward, I use constant radii for critical porosity

determinations. The resulting critical porosity for the smallest radius having the

2Typically simulations are repeated 10 to 20 times for a given percolation object geometry to
determine average percolation thresholds and standard deviations.
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smallest uncertainty is ¢, = 67% £ 1.5% which is in good agreement with commonly
cited values of 68 % [Sahimi, 1995] for the fully penetratable disc model. The decrease
of the critical porosity uncertainty stems from the fact that effects from the boundary
of the lattice become less pronounced when the lattice is significantly larger than the
percolation objects (see also Stauffer [1984]). This is analogous to saying that the

characteristic length [, has to be significantly smaller than the overall size of a sample3.
3D-Sphere

These simulations are the 3D-analog of the 2D-disc model. The ratio of radius to
lattice length ranges from 0.03 < r/L < 0.2. As r/L decreases the uncertainty
of ¢ decreases as well (Figure 4.5). The resulting critical porosity however is only
Ger = 28.6%10.9% which also is in good agreement with commonly accepted values of

about 30% for the three-dimensional fully penetratable sphere model [Sahimi, 1995].
2D-Ellipse

Figure 4.6 shows the change of critical porosity with change of the aspect ratio of
ellipses as percolation objects. For an aspect ratio of 1 (circle) the critical porosity is
the same as in the 2D-circle model with ¢, ~ 68%. The minor half axis is constant
whereas the major half axis increases to the right to yield increasing aspect ratios.
The elongation direction is oriented in percolation direction. The critical porosity
decreases with increasing aspect ratio and asymptotically approaches a value slightly

above 20 %.

3Imagine a square of side length L = 10 and a disc of radius slightly bigger than r = 5. Only
one such disc placed in the center of the square would yield a critical porosity of ¢.. = ”TTz which
is approximately 79 %. If this disc is only slightly off-center, at least two discs are necessary to
provide a connected pathway and the random position of their centers would largely determine if
there is a connected pathway and what the critical porosity should be. ¢., would thus reflect the
random placement of disc centers in the square rather than the effect of the geometric structure of
the percolation objects (here discs) on the critical porosity.
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Figure 4.5: Critical porosity (percolation threshold) for the 3D-sphere model. Ana-
logue to Figure 4.4, smaller radii decrease the uncertainty. The critical porosity
decreases with decreasing radius and is ¢, ~ 29%. r = sphere radius, L = sidelength
of the lattice.

3D-Ellipsoid

In contrast to the 2D-ellipse simulations, I observe an increase in ¢., with an increase
in aspect ratio (Figure 4.7). Here, the major to minor axis ratio varies while the
intermediate axis stays constant. The longest axis is oriented in percolation direction.
The ¢.. value for a sphere (aspect ratio = 1) is consistent with the 3D-sphere model
(¢e ~ 30%) which is a good check for the 3D-ellipsoid model.

A principle important difference between the 2D and the 3D models is that a
sample spanning percolation pathway in the 2D system divides the impermeable
matrix into two separate parts. The 3D system however is a bicontinuous system for
pathway porosities between 30% (critical porosity) and 98%, where both media, the
impermeable matrix and the permeable pathway are continuously connected [Sahimi,
1995]. This is observed in reticulite that shows porosities of up to 99 % [Mangan et

al., 1996]. This fact is critical in later discussions.
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Figure 4.6: Critical porosity (percolation threshold) for the 2D-ellipse model. The un-
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the 3D-sphere model (Figure 4.5)
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Chapter 5

Interpretations of Measurements
Using Percolation Theory

In this chapter I interpret the measurements of Chapter 3 by using the percola-
tion theory model introduced in Chapter 4. Chapter 6 then deals with permeability
estimations using image analysis techniques and Kozeny-Carman equations (IAKC
model) as proposed by the TAKC model, Chapter 4.

The larger the diameter of the tubes transporting fluid, the smaller is the inner
surface area of the tubes per unit volume (specific surface area) for a given porosity.
This results in less frictional force, easier fluid flow, and therefore higher permeabil-
ities. I am interested in the relationship between the geometry of the pathway, the
microstructure, and the permeability and not in the resistance to flow due simply to
smaller tube radii. Permeability values are therefore normalized by dividing them
by the characteristic cross sectional bubble area A. of each sample (see Chapter 2
and Figure 2.6). Bosl et al. [1998] follow a similar approach for granular material
by normalizing their permeability values by the sphere diameter squared to compare
permeability values at different grain scales. Figure 5.1a and Figure 5.1b show unnor-
malized data for flowl, flow2 and scoria samples whereas Figure 5.1c and Figure 5.1d

show the same data, with £ normalized by A.. The A, used is indicated by a color
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code.

I use Equation (4.6) together with the determined critical porosity ¢., = 28.6% ~
30%, the exponent pu = 2, and the scaling constant C' to generate the percolation
power law curve used for the graphs in this chapter. The solid curve represents the
actual calculated values whereas the dashed curves indicate a factor of 5 deviation
from the solid curve. The percolation theory equations involving a percolation thresh-
old, such as the critical porosity, are valid only above, and close to, the percolation
threshold itself. Since below the percolation threshold no connected pathway should
exist, no significant permeability should be measured for porosities smaller than the
critical porosity. However I will argue below how relatively high permeabilities can
exist well below the critical porosity ¢, as shown in the data.

This assumes that for all sample types (scoria, flowl, and flow2) a connected
sample-spanning pathway was achieved in the very early formation stage when all
systems consist only of subspherical bubbles, and the porosity was above the critical
porosity (¢ = 30%). I carried out percolation theory simulations where the porosity
was increased above ¢,... These calculations show that a minimal porosity increase
above ¢,,, approximately 1 %, yields a bicontinuous percolation system, in which both
the permeable and the impermeable media are continuous. This is in good agreement
with Sahimi [1995]. Therefore virtually all bubbles are connected (Figure 2.5) at
¢ > ¢.. If the assumption of bubble coalescence during the early emplacement stage
is correct, then the 3D-sphere percolation model and its critical porosity of about
30 % may be the appropriate one to determine the percolation threshold for scoria
(spheres), flow1 (ellipsoids) and flow?2 (collapsed ellipsoids) samples. This assumption
is probably realistic, because the subspherical bubbles in scoria are mostly connected
(see Figure 2.5). Bubble elongation as shown in flowl and flow2 samples and bubble

collapse as shown in flow2 samples probably occur at a later stage causing a secondary
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change of permeability and porosity values. Figures 5.3, 5.6, and 5.7 show the curves

obtained this way together with the normalized data for the scoria and flow1 samples.

5.1 Scoria and Flowl Samples

The unnormalized scoria data show an increase in permeability with an increase
in porosity that is accompanied by an increase in characteristic bubble size (Fig-
ure 5.1b). However when the data points are plotted on a graph where the per-
meability is normalized by characteristic bubble size (cross sectional surface area),
one can see that the points plot approximately on a horizontal line indicating only
minimal permeability increase with increasing porosity (Figure 5.1d). This indicates
that the permeability increase is mostly governed by an increase in average bubble
size leading to less viscous resistance due to smaller specific surface areas. Subspher-
ical bubbles are formed during the early emplacement stage of both cinder cones and
flows. These bubbles grow due to decreasing pressure and continued degassing during
magma ascent [e.g. Mangan and Cashman, 1996]. Figure 2.5 shows that practically
all bubbles (scoria and flows) are connected so that I know that these bubbles coalesce
and form apertures. Rapid cooling, however, prevents further aperture widening in
cinder cone scoria. Scanned images of cinder cone cores show that bubbles deform
each other (Figure 5.2) rather than completely draining the thin film in between them
which requires slower cooling rates.

I call this effect of reduced interbubble film relaxation “impeded aperture widen-
ing”. The shape of the bubbles reflects deformation due to bubble expansion rather
than elongation due to shear flow. Bubbles preserve their subspherical shape to a
large degree due to rapid cooling (chilling), low viscosities and high basalt-gas sur-
face tension (see chapter IV). This results in low average roundness numbers between

Riouna = 1.26 and Ryoung = 1.57 (see Figure 3.5) where R,ounq = 1 indicates a perfect
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Figure 5.2: Impeded coalescence and aperture widening of bubbles in scoria samples
due to rapid cooling rates which prevents the thin lava film in between bubbles to
drain significantly. Interbubble apertures are small and might not be shown in an
arbitrary cross section. However, bubbles deforming each other does not indicate a
lack of coalescence between these particular bubbles.

sphere.

The processes leading to the shape and geometry of the permeable pathways in
scoria samples are the ones that are best reflected by the percolation theory power
law curve I used. The 3D-sphere percolation model uses spheres as percolation objets
and assumes a connection between two spheres with radius r that develops as soon
as the spheres overlap (distance between sphere centers < 2r).

The 100 % connectiveness of the pores argues for relatively easy coalescence of
the bubbles and the subspherical bubble shape implies early quenching of the lava
preserving this initial coalescence stage and impeded aperture widening. The porosity
(total=accesible) is higher than the critical porosity calculated in the 3D-sphere model
allowing all bubbles to be connected. This is observed in my percolation simulations
as well. The models I calculate indicate that a small further porosity increase beyond
the critical porosity ¢.. by approximately 1 % (adding more spheres in the model)
results in a connection of all bubbles. This agrees with Sahimi [1995] who states that

both media (the permeable and the impermeable) in a fully penetratable 3D-sphere
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model are completely connected (bicontinuous system) for porosities between 30 and
98 %. Only the 3D case of the fully-penetratable sphere model is bicontinuous. This
observation explains the high pore space connectivity (100%) of vesicular materials
once the porosity exceeds the critical porosity of about 30 % which is the case for all
scoria samples.

The model further assumes that the impermeable matrix really is completely
impermeable and that no micropore permeability exists. All fluid is assumed to flow
through the macropores. This again is true for the scoria samples which show a glassy
impermeable matrix surrounding the vesicles and mostly true for the flowl samples.

Figure 5.3 shows the power law curve obtained by the fully penetratable 3D-
sphere model. Flowl samples are plotted together with scoria samples in Figure 5.3
since their textures and bubble geometries are very similar: Both have a glassy,
predominantly impermeable matrix (see thin section images in Figures 3.2 and 3.3),
a pore space connectiveness of 100%, and smooth, round (see Figure 3.5) subspherical
(scoria) or ellipsoidal (flowl) bubbles (for comparison see also Table 4.1).

The curve is scaled to the measured permeability values. This is necessary in
simple power law ¢ — k relations since no microstructural parameters are taken into
account. The magnitude of the percolation curve therefore falls in the right range.
The shape of the curve, however, and its predictions for k is of interest here and is
defined by the critical porosity, ¢, the exponent p and the power law, Equation (4.9).
The solid line is the actual curve whereas the dashed lines indicate a factor of five
deviation from that curve. Blair et al. [1996] obtain a deviation of a factor of two
to three in their IAKC model. The Scoria samples fall within this range as well
as most of the flowl samples. However it can be observed that the flowl samples,
on average, are more permeable than the scoria samples for a given porosity which

reflects an important difference despite their similarities. Flowl samples contain
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Figure 5.3: ¢-k relationship (normalized) for scoria (filled circles) and flowl (open
squares) samples. Here ¢, = 30% and p = 2 [Sahimi, 1995]. The curve is valid only
close to ¢.,, but has been extended to ¢ = 80%.

elliptical bubbles of an aspect ratio of about 2 to 3 as a result of shear flow elongating
the bubbles in flow direction [Polacci et al., 1997; Polacci and Cashman, 1998]. The
pore space connectiveness is 100 % for both scoria and flowl samples, the slower
cooling rates allow more time for drainage of the thin film separating two bubbles
and therefore causes interbubble aperture widening (see also Chapter 5). I expect
that the interbubble aperture size determines largely the resistance of the pathway
network towards fluid flow and not the inter aperture bubble size. On average larger

apertures therefore yield higher permeabilities' for given porosities.

5.2 Flow2 Samples

It is likely that flow2 samples represent a more developed stage of the crystalliza-
tion and deformation process noticed in flowl samples. The longer cooling time allows

further deformation and drainage of the thin film separating bubbles, and therefore,

! An additional factor increasing permeability might be the existence of intercrystalline micropores
in a beginning dictitaxitic texture due to some crystal growth. However this effect can probably be
neglected since the predominantly glassy matrix fills micropores.
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widening the interbubble apertures resulting in an increase of the overall permeability
of the system. The matrix finally reaches a holocrystalline, diktytaxitic texture in
which the intercrystalline micropores might allow additional fluid flow increasing the
permeability. However, permeability measurements on flow2 samples containing only

2

micropores show permeabilities on the order of 107" m? and can therefore be ne-

glected when compared to measured permeabilities in the range of 10714 < k < 107!2
m?. The enhanced permeability due to aperture widening, however, permits the
escape of gas from bubbles leading to bubble collapse and a decrease in total poros-
ity (Figure 5.4). Aperture widening, however, is not as pronounced in flowl samples
as in flow2 samples. Flowl samples reflect the initial stage of a basalt flow emplace-
ment and are relatively rapidly cooled resulting in properties more similar to the
quenched scoria samples though indicating the beginning of aperture widening when
slower cooling rates are present. Scoria samples on the other hand show impeded
aperture widening.

The measured accessible (connected) porosity of flow2 samples showing collapsed
bubbles is still as high as the total porosity but significantly below the critical poros-
ity (¢or ~ 30%). An explanation for this could be provided by the idea that a fully
connected pathway network formed at the very early 3D-sphere stage of the system
when the porosity exceeded the critical porosity. This network is preserved even when
vesicles collapse (Figure 3.4). Although surprising at first, it is reasonable considering
the fact that the fully penetratable sphere (or ellipsoid or pathway) model is bicon-
tinuous (see introduction to this chapter) and all pores are connected once the critical
porosity is exceeded by only a small amount (about 1 %). This must have been the
case for the flow2 samples before their permeability increased so much, due to aper-
ture widening, that gas escaped and the bubbles collapsed. Closing such a complex

network of branching and connected pathways at some locations is very unlikely to
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Figure 5.4: Bubble degassing and collapse. From left to right the cooling rate de-
creases allowing more crystal growth and aperture widening (flowl samples) which
leads to higher permeabilities in elongation (flow) direction. This in turn allows gas
to escape from the bubbles which then “collapse” (flow2 samples).
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Figure 5.5: Micropore bridging over collapsed bubbles

form isolated pores. The resulting elongated pathways (Figures 5.44, and 3.4) show a
more consistent width than the overlapping bubbles forming small apertures in scoria
or flowl samples (Figure 5.4 stage 1 and 2, Figure 3.2 and Figure 3.3). The fluid flow
in flow2 samples is therefore less impeded, while the porosity is decreased by a large
degree.

In addition, it is probable that completely closed pathways are bridged by micro-
pores (Figure 5.5). Flow2 samples therefore can have relatively high permeabilities
for porosities well below the percolation threshold of ¢.. ~ 30%, where k& should be
virtually zero (Figure 5.6). Permeability values in Figure 5.6 are normalized by A..
The permeability decrease accompanied by a decrease in cross sectional area (higher
specific surface area) due to bubble collapse is therefore taken into account.

In summary, it can be observed in Figure 5.7, that flow2 samples show a counter-
intuitive trend of decreasing bubble size and porosity (total = connected) while their
normalized permeability stays constant or even increases slightly as a result of mi-
croporosity. This trend leads to a deviation away from the predicted percolation
curve (Figure 5.7a and Figure 5.7b) allowing high permeabilities for porosities below
the critical porosity (¢. ~ 30%) where no connected pathway should exist and &

should be close to zero. Figure 5.7 shows this trend for normalized data. Unnormal-
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Figure 5.6: Normalized ¢-k relationship for scoria, flowl and flow2 samples. A, is
the characteristic cross sectional bubble area of a sample. Scoria samples follow the
trend suggested by percolation theory relatively well, whereas flowl samples deviate
from it to a larger degree. Flow2 samples do not follow the curve at all, but show
relatively high permeabilities for ¢ < ¢.., where k£ should be close to zero.
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ized data (Figure 5.1a) shows a less pronounced trend, since smaller (collapsed but
connected) bubbles decrease the permeability due to increased viscous resistance per
bubble cross sectional area. In addition, the higher intercrystalline microporosity in
basalt flows might increase the permeability values as well. However this effect can
probably be neglected, because, as mentioned previously, samples containing micro-

pores have permeabilities of about 1077 m?.
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Figure 5.7: Divergence of flow samples from percolation theory model. Flow2 samples
(stage 4) cooled relatively slowly which is reflected by the high crystal abundance.
Therefore relaxation of the thin film between bubbles is possible, widening the in-
terbubble apertures and leading to an increase in permeability. The enhanced per-
meability allows degassing of bubbles which in turn leads to bubble “collapse”. The
overall counterintuitive effect is a pronounced decrease in porosity below the critical
porosity of ¢.. ~ 30% accompanied by a normalized permeability increase due to

high pathway connectiveness.
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Chapter 6

Permeability Estimations Using
Kozeny-Carman Equations

In this chapter I estimate the permeability of vesicular basalt samples using the
TAKC model (Chapter 4). I compare these estimated permeabilities with permeabil-
ity measurements (Chapter 3) and with interpretations based on percolation theory

(Chapter 4) and porosity measurements.

6.1 Method of Calculating Permeability

Kozeny-Carman equations [Carman, 1956; Dullien, 1979] can be used to estimate
permeability when the specific surface area (surface area of the bubble-rock interface
per unit volume), the formation factor F' and the porosity of the sample are known.
This approach has so far been mostly applied to approximately homogeneous granular
materials such as welded glass beads and Berea sandstone [e.g. Berryman et al., 1996].

Here I apply these ideas to less homogeneous (partly anisotropic) vesicular basalt.
I measure specific surface area using two-point correlation functions (Chapter 2) and
determine the formation factor using Equation (4.8). Total porosity and accesible
porosity were determined using the methods described in Chapter 2 and 2, respec-
tively. In addition I computed total porosity, using a one-point correlation function,

see Chapter 2 and Equation (2.18), which provides an estimate of the real porosity
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Figure 6.1: Comparison of total porosity measurements. The integrated method (sse
Chapter 2) is more accurate than the image analysis method, because it uses the
whole sample to determine the porosity and not just a cross sectional image. It can
be observed that the two methods yield different results which is a measure of the
extent to which the cross sectional image is representative (filled triangles: flow2
samples, open squares: flowl samples, filled circles: scoria samples).

because only a cross section of the total core is used rather than the whole core. Nev-
ertheless it provides indication of how representative such a cross sectional area is for
the whole core sample which is important since the same cross sectional image is used
for the determination of the specific surface area in two-point correlation functions
(Chapter 2). Figure 6.1 shows the relationship between measured integrated porosity
and the cross sectional porosity measurement.

Figure 6.1 shows that the samples are relatively heterogeneous, since samples de-
viate by a considerable amount (but less than 10 %) from the line indicating same
porosity values for both methods. This heterogeneity was observed in the field and
in handsamples and causes difficulties in permeability estimation. Therefore, I tried
to choose samples that are as homogeneous as possible. In contrast to total poros-

ity determination where I apply two methods and choose the much more accurate
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integrated porosity measurement value as porosity data base I can only obtain spe-
cific surface area values by using a representative cross sectional images for two-point
correlation functions. Therefore it can be expected that the surface area is only a
particular value of a core cross sectional area and may vary throughout the more
or less heterogeneous cores. Gas absorption methods provide a much more accurate
surface determination. However the two-point correlation method was chosen since
it provides a smoothed estimate of the bubble surface area which is, according to
Berryman et al. [1987], the one necessary for Kozeny-Carman equations (see also
Chapter 4), though the Kozeny-Carman equation itself depends on idealized paral-
lel tubes representing the complex real pathway system of a rock. Berryman et al.
[1987] also stress that permeability estimations deviate increasingly with increasing

heterogeneity.

6.2 Comparison of Calculated and Measured
Permeability

Figure 6.2a shows calculated permeability values for the 39 samples. The calcu-
lated permeability values are systematically higher for flows (flowl and flow2) than
for scoria samples which is due to the larger bubble sizes in flows. Once the calculated
permeability is normalized by characteristic bubble cross sectional area (Figure 6.2b),
the distinction between cinder cones and basalt flows is not as pronounced.

The smaller cinder cone vesicle sizes, compared with basalt flow vesicles, lead to
a larger number of vesicles in cinder cones than in basalt flows for a given porosity.
This in turn results in larger specific surface areas for cinder cone samples, despite
their higher roundness. The distinct curves for cinder cone and basalt flow samples in
Figure 6.2a and the common curve for both sample types in Figure 6.2b is therefore

expected.
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Figure 6.2: Calculated permeability using the ITAKC model. a: k is not normalized,
b: k is normalized by the charcteristic cross sectional bubble area A..
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The strong impact of porosity on permeability estimates is evident in Equa-
tion (4.6). It becomes more obvious when Equation (4.8) with an exponent of m = 1.5

(for very round bubbles) is substituted into Equation (4.6)

<253.5

cs?

k (6.1)

Even higher porosity exponents, up to 2 in Equation (4.8), are expected for less round
bubbles [Archie, 1942; Sen et al., 1981; Blair et al., 1996]. Therefore permeability is
more sensitive to porosity than specific surface area, when Equation (4.8) is used to
obtain the formation factor.

When I compare calculated and measured permeability (Figure 6.3) it can be ob-
served that the calculated permeabilities are systematically higher than the measured
ones by several orders of magnitude.

A contribution to the lower measured permeability values could be that the equiv-
alent channel model [Paterson, 1983] assumes cylindrical tubes of a cross sectional
tube area similar to the average cross sectional void area in the images. Again this
assumption is more likely to hold true for granular material where cross sections
through intergranular necks (Figure 6.4a) are more representative of the equivalent
channels, despite being subject to large variations, than cross sections through bub-
bles in vesicular basalts. Permeability of vesicular material is largely determined by
the even wider range of, but on average far smaller, aperture sizes formed by over-
lapping penetratable spheres or ellipsoids (Figure 6.4b) (fully penetratable sphere or
“inverted Swiss cheese” model [Feng et al., 1987], rather than by the whole bubble
cross section (which is the measured one). The effective tubular cross sectional area is
therefore likely to be overestimated by a large degree in vesicular basalt images, even

though arbitrary cross sections through spheres usually do not show the full sphere
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Figure 6.3: Calculated and measured permeability (not normalized). The calcu-
lated permeability for a given porosity is about four orders of magnitude higher than
the measured permeability. This overestimation of permeability could be a result
of insufficient interbubble aperture resolution of the images. The small apertures
determine the permeability rather than the large bubbles in between the apertures
(see Figure 6.4). These large bubbles, however, are mainly resolved in the images
and therefore used for specific surface area determinations in two-point correlation
functions. However, the shapes of the trends (calculated and measured k) show sim-
ilarities, indicating a possible use of the IAKC model for vesicular basalt, if the fluid
flow determining aperture sizes are resolved. Flow2 samples show a smaller overesti-
mation of approximately three orders of magnitude, which indicates a larger aperture
over bubble size ratio and therefore slightly better flow pathway representations in
these images.
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Figure 6.4: The neck and overlapping spheres models. The two different fluid flow
pathways. a) fluids flow through narrow necks in between impermeable spheres (e.g.
granular materials). b) fluids flow through permeable spheres, i.e. the fully penetrat-
able sphere model (modified from Feng et al., 1987). The small interbubble aperture
size determines largely the material’s fluid flow properties, such as permeability, rather
than the large bubbles themselves.

diameter or cross sectional area.

Permeability estimations are still about four orders of magnitude too high. This
large discrepancy is probably the effect of a significantly smaller aperture size of over-
lapping ellipsoids than the average size of the ellipsoids. It is not possible, however, to
account for this effect using image analysis techniques, to determine the parameters
for the Kozeny-Carman equation. A different method seems to be needed to estimate
permeability in vesicular materials. In my concluding remarks I suggest a method

that might be appropriate to address the noted complication.

The collapsed bubbles of the flow2 samples (Figure 3.4 and Figure 5.4 stage 4)
represent the average pathway properties slightly better than the uncollapsed bubbles
in flowl and scoria samples, since apertures in flowl samples are widened (closer to
the granular material geometry). However, the predominantly non-elliptical, very
narrow and stretched pore spaces observed in flow2 samples are difficult to resolve

with image analysis techniques. This can be seen in table T3 where the maximum
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resolution capacity of 1200 dpi is not sufficient for some of these flow2 samples. An
increase in resolution above 1200 dpi is expected to yield an increase in specific
surface area (similar to the granular material case). An underestimation in specific
surface area however results in an overestimation of permeability. The effects of more
appropriate pathway geometries (decreasing k estimates) but too small resolutions

(increasing k-estimates) may cancel out each other.

6.3 Conclusions Involving Kozeny-Carman
Equations

The Kozeny Carman equation that is based on the equivalent channel model
[Paterson et al., 1983] (Equation 4.6) relies on the correct determination of the channel
cross-sectional properties which are expressed in terms of porosity and specific surface
area of a material. Ideally the samples should be homogeneous, all pores should be
connected and if image analysis is used, an image from a sample cross section should
exhibit an average range of pore cross sections that determine the fluid flow properties
of the medium. In vesicular materials however the inter-bubble apertures which
largely determine the material’s permeability are by far smaller than the measured
average inter-aperture bubble size. The average aperture size cannot be resolved
with image analysis techniques. Therefore the aperture sizes remain overestimated
by a large degree leading to permeability overestimations by about four orders of
magnitude.

It might be possible to adjust the equation by simply dividing the k-estimates
by this factor. This however requires actual initial permeability measurements of
the material in question in order to obtain that factor and is therefore not particular
useful (except for the case when many k-data of roughly the same material are needed

and can’t be carried out easily). It is also not clear at this point how this factor might
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change from one location within a lava flow to another, since it reflects the average
aperture size (average overlap of bubbles).

I therefore conclude that the IAKC-model is not appropriate for k-estimations of
vesicular materials where the vesicles accommodate fluid flow, even though it seems
to work for the inverse case of fluid flow around impermeable spheres (granular ma-

terials).
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Chapter 7

Concluding Remarks

Bubbles forming in cinder cone scoria are best characterized by the fully penetratable
sphere model. Aperture widening is impeded due to rapid cooling, and thus does not
allow the thin interbubble film to fully retract. Permeability values therefore plot
close to the theoretical porosity-permeability relationship curve determined by the
percolation theory approach.

Because the porosities of scoria samples are greater than the critical porosity
of ¢, ~ 30% almost all pores are connected. The scoria bubble-matrix system
is therefore a bicontinuous system in which both the impermeable matrix and the
permeable pathways are continuous (no isolated “islands”). This is also confirmed in
percolation simulations in which a slight increase above the critical porosity leads to
a fully connected pathway system.

The high crystallinity of some basalt flow samples (less pronounced in flowl than
in flow2 samples) indicates slow cooling rates which allows the widening of “narrow”
pathways (apertures) between bubbles. This leads to smaller specific surface areas
of the critical narrow pathways (apertures), increases the overall permeability, and
allows gases in the bubbles to escape (flow2 samples only). As a consequence, bubbles
in flow2 samples seem to “collapse” resulting in a decrease of porosity and permeabil-

ity. Normalizing permeabilities by the smaller characteristic pathways (bubble cross
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sectional area A.), however, accounts for the effect of £ decrease due to narrowing.
This results in an increase in normalized k. Flow2 samples therefore show relatively
high permeabilities for porosities significantly below the critical porosity of ¢. = 30%.
Similar to the scoria samples, flow samples (both flowl and flow2 samples) also
contain fully connected pore spaces and therefore also represent a bicontinuous sys-
tem. This is true even for low2 samples containing collapsed bubbles indicating that
the closing of some pathway locations does not prevent the complex pathway network,
that was formed at an early stage of high porosities, from being totally connected.
It is important to note that the percolation theory approach does not offer a
scaling possibility, as it lacks parameters like the formation factor or the characteristic
length. Some measurements therefore have to be carried out in order to scale the
calculated power law curve to the necessary magnitude (see Chapter 4). However,
it provides a description of a porosity-permeability relationship and thus provides a
framework for interpreting measurements. Therefore it can potentially be used to gain
a qualitative understanding of processes associated with vesicular basalt formation.
In order to determine a porosity-permeability relationship for vesicular basalts
it is necessary to account for emplacement mechanisms and microstructures. Perco-
lation theory concepts using a power law relationship and the idea of a percolation
threshold (here critical porosity) provide an adequate correlation between porosity
and permeability around ¢, only if bubble collapse can be neglected and interbub-
ble aperture widening is not very pronounced (scoria and to a certain degree flowl
samples).
Image-analysis techniques can probably not be used for Kozeny-Carman equation
parameter determination for vesicular materials since the average interbubble aper-
ture size is not resolved with such a technique. A self-scaling method, not relying on

a scaling constant, e.g. percolation models, is therefore lacking.
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Vesicular materials probably require the development of a more dynamic model
that uses emplacement mechanisms and processes (e.g. vesicle nucleation, grow, de-
formation, degassing and collapse) to generate a 3D-image of overlapping “ellipsoids”.
The simulation can be performed until the boundary conditions (total and accessible
porosity and average ellipsoid aspect ratio) are achieved. The analysis of this 3D-
image might be more appropriate to estimate the permeability of vesicular basalts
since the average aperture size of overlapping ellipsoids can be calculated and be used
as the characteristic tube size in the equivalent channel version [Paterson et al., 1983]

of the Kozeny-Carman equation (Equation 4.6).
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Appendix A

Constraints on Radius
Minimization in the Percolation

Theory Model

Although I am using a continuous model with object centers and axis-lengths being
real-valued numbers, it is necessary to discretize the lattice to calculate the critical
porosity once a percolation pathway is achieved. However, calculations to check for
a connected pathway are done on undiscretized continuous objects. Discretization
places constraints on the minimum bubble size, since the round objects have to be
approximated by discrete squares (2D) or cubes (3D) of sidelength L = 1. It is
necessary to minimize the percolation object size with respect to the lattice size while
keeping it large enough so that discrete cube elements allow appropriate estimations
of the critical porosity ¢.;.

The only possibility to achieve the two conditions of having small enough percola-
tion objects within the lattice and having large enough objects that can be sufficiently
approximated by discrete cubes is to increase the lattice size. I am using a 1000 x 1000
continuous square in 2D and a 1000 x 1000 x 1000 continuous cube in 3D, while radii
(or percolation object half axes) are typically around 10 length units. It would re-

quire 50 (for r = 10) perfectly aligned circles/spheres to form a pathway from one
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side of the cube to the other when using these dimensions. Since this is statistically
extremely unlikely to happen, typical sphere numbers range from 2000 to 3000 at the
percolation threshold. To obtain an average critical porosity and a standard devia-
tion, I typically carry out 10 to 20 runs for each porosity-determination for a given
object geometry and size. The chosen dimensions of the lattice and the object sizes
and the 10 to 20 run repetitions require on the order of 10°~!! calculations in order
to check for a connected pathway and for calculating porosity, leading to calculation
times for critical porosities on the order of 2 to 10 days on an Ultra Sparc II (Sun)
work station. Improving the program (simplifying algorithms, upgrading to C** and
parallel processing) is therefore necessary in order to be able to conduct dynamic
percolation models that include various ellipsoid orientation and bubble collapse pro-
cesses due to degassing (see later). However the work done so far can already provide

useful information about critical porosities of the basalt samples.
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Appendix B

Core Images

In order to conduct image analysis calculations, it is necessary to prepare the core
cross sectional discs for scanning purposes. The pores are first filled with spray paint
to access very small pores and then with plaster to completely fill large voids. The
surfaces are polished to eliminate surplus paint on non-void rock faces and then spray-
painted with a clear lacquer to enhance the black (rock) and white (voids) contrast.
The rock discs are then directly scanned at 1200 dpi resolution and inverted so that
the voids are black and the rock is white to achieve a binary image.

Some permeability measurements are carried out on different sections of a rock
core. The image used for image-analysis purposes is the same in these measurements,
because the cross-sectional characteristics should be similar for the different sections

of the same core. Some images are therefore duplicates of another.
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