Mahmoud Hefny Publications Content

Publications

[Go to Proceedings Refereed]  [Go to Theses]

Underlined names are links to recent or past GEG members

REFEREED PUBLICATIONS IN JOURNALS

2. 
Hefny, M., C.-Z. Qin, M.O. Saar, and A. Ebigbo Synchrotron-based pore-network modeling of two-phase flow in Nubian Sandstone and implications for capillary trapping of carbon dioxide International Journal of Greenhouse Gas Control, (in press). [View Abstract]Depleted oil fields in the Gulf of Suez (Egypt) can serve as geothermal reservoirs for power production using a CO2-Plume Geothermal (CPG) system, while geologically sequestering CO2. This entails the injection of a substantial amount of CO2 into the highly permeable brine-saturated Nubian Sandstone. Numerical models of two-phase flow processes are indispensable for predicting the CO2-plume migration at a representative geological scale. Such models require reliable constitutive relationships, including relative permeability and capillary pressure curves. In this study, quasi-static pore-network modeling has been used to simulate the equilibrium positions of fluid-fluid interfaces, and thus determine the capillary pressure and relative permeability curves. Three-dimensional images with a voxel size of 0.65 μm3 of a Nubian Sandstone rock sample have been obtained using Synchrotron Radiation X-ray Tomographic Microscopy. From the images, topological properties of pores/throats were constructed. Using a pore-network model, we performed a sequential primary drainage–main imbibition cycle of quasi-static invasion in order to quantify (1) the CO2 and brine relative permeability curves, (2) the effect of initial wetting-phase saturation (i.e. the saturation at the point of reversal from drainage to imbibition) on the residual–trapping potential, and (3) study the relative permeability–saturation hysteresis. The results illustrate the sensitivity of the pore-scale fluid-displacement and trapping processes on some key parameters (i.e. advancing contact angle, pore-body-to-throat aspect ratio, and initial wetting-phase saturation) and improve our understanding of the potential magnitude of capillary trapping in Nubian Sandstone.

1. 
Hefny, M., A. Zappone, Y. Makhloufi, A. de Haller, and A. Moscariello A laboratory approach for the calibration of seismic data in the western part of the Swiss Molasse Basin: the case history of well Humilly-2 (France) in the Geneva area Swiss Journal of Geosciences , 113/11, 2020. [Download PDF] [View Abstract]A collection of 81 plugs were obtained from the Humilly-2 borehole (France), that reached the Permo-Carboniferous sediments at a depth of 3051 m. Experimental measurements of physical parameters and mineralogical analysis were performed to explore the links between sedimentary facies and seismic characteristics and provide a key tool in the interpretation of seismic field data in terms of geological formations. The plugs, cylinders of 22.5 mm in diameter and ~30 mm in length were collected parallel and perpendicular to the bedding in order to explore their anisotropy. Ultrasound wave propagation was measured at increasing confining pressure conditions up to 260 MPa, a pressure where all micro-fractures are considered closed. The derivatives of velocities with pressure were established, allowing the simulation of lithological transitions at in-situ conditions. At room conditions, measured grain densities [kg/m3] range from 2630 to 2948 and velocities vary from 4339 to 6771 m/s and 2460 to 3975m/s for P- and S-waves propagation modes, respectively. The largest seismic-reflections coefficients were calculated for the interface between the evaporitic facies of the Keuper (Lettenkohle) and the underlying Muschelkalk carbonates (Rc= 0.3). The effective porosity has a range of 0.23% to 16.65%, while the maximum fluid permeability [m2] is 9.1e-16. A positive correlation between porosity and ultrasound velocity has been observed for P- and S-waves. The link between velocities and modal content of quartz, dolomite, calcite, and micas has been explored. This paper presents a unique set of seismic parameters potentially useful for the calibration of seismic data in the Geneva Molasse Basin.


[back to Top of Page]

PROCEEDINGS REFEREED

1. 
Hefny, M., C.-Z. Qin, A. Ebigbo, J. Gostick, M.O. Saar, and M. Hammed CO2-Brine flow in Nubian Sandstone (Egypt): Pore-Network Modeling using Computerized Tomography Imaging , European Geothermal Congress (EGC), 2019. [View Abstract]The injection of CO2 into the highly permeable Nubian Sandstone of a depleted oil field in the central Gulf of Suez Basin (Egypt) is an effective way to extract enthalpy from deep sedimentary basins while sequestering CO2, forming a so-called CO2-Plume Geothermal (CPG) system. Subsurface flow models require constitutive relationships, including relative permeability and capillary pressure curves, to determine the CO2-plume migration at a representative geological scale. Based on the fluid-displacement mechanisms, quasi-static pore-network modeling has been used to simulate the equilibrium positions of fluid-fluid interfaces, and thus determine the capillary pressure and relative permeability curves. 3D images with a voxel size of 650 nm3 of a Nubian Sandstone rock sample have been obtained using Synchrotron Radiation X-ray Tomographic Microscopy. From the images, topological properties of pores/throats were constructed. Using a pore-network model, we performed a cycle of primary drainage of quasi-static invasion to quantify the saturation of scCO2 at the point of a breakthrough with emphasis on the relative permeability–saturation relationship. We compare the quasi-static flow simulation results from the pore-network model with experimental observations. It shows that the Pc-Sw curve is very similar to those observed experimentally.