Mission Statement

The Geothermal Energy & Geofluids group is endowed by the Werner Siemens Foundation and investigates reactive fluid (water, CO2, CxHy, N2) and (geothermal) energy (heat, pressure) transfer in the Earth’s crust employing computer simulations, laboratory experiments and field analyses to gain fundamental insights and to address a wide range of societal goals and concerns.

wss logo

GEG News


Doctoral Examination Marina Grimm Lima

On Tuesday, September 8th, Marina Grimm Lima has successfully defended her PhD thesis, entitled: “Evolution of permeability of natural fractures due to THMC processes in the context of CO2-based reservoir applications”.


Airborne geomagnetic survey over the lavafields near Þorbjörn volcano in Iceland

Franco Aubert and Friedemann Samrock just completed 137km of airborne geomagnetic survey over the lavafields near Þorbjörn volcano in Iceland. The study is part of project MAGIC – Multidisciplinary imaging and characterization of the magma/fluid reservoir beneath Svartsengi – in collaboration with GFZ Potsdam, ISOR and the University of Iceland. The photo shows our drone during a mission and the 74.4MWe Svartsengi power plant in the background. (click on picture to enlarge)

Read more – link to project website


Tenure for Dr. Xiang-Zhao Kong

Dr. Xiang-Zhao Kong has achieved permanency status (tenure) in the Geothermal Energy and Geofluids (GEG) group of the Department of Earth Sciences at ETH Zurich. He has done an outstanding job, which includes research and publications, student supervision, raising grants, and setting up the GREAT Visualization lab of the GEG Group.


New project: studying geothermal resources in Ethiopia

New project MIRIGE in Ethiopia to study magmatic rifting and the formation of geothermal resources funded by ETH grant.

Read more – link to project website


Doctoral Examination Justin Ezekiel

On Monday, July 27th, Justin Ezekiel has successfully defended his PhD thesis, entitled: “Assessment and optimization of geological carbon storage and energy production from deep natural gas reservoirs”.


Top Ranking for ETH Zurich in the QS World University Ranking

© Image ETH Zurich

ETH Zurich has demonstrated continuous improvement in the QS World University Ranking, from 12th place in 2015 to 6th place in last year’s 2020 ranking.

Read more – link to QS TopUniversities Webpage

Read more – link to ETH News webpage

Top 1 Ranking for ETH Zurich’s Earth Sciences in QS World University Rankings

Earth and marine sciences at ETH Zurich was ranked the best in the world for the 5th time in a row.

Read more – link to QS TopUniversities Webpage

Read more – link to ETH News webpage


Doctoral Examination Jin Ma

On Thursday, May 28th, Jin Ma has successfully defended her PhD thesis, entitled: “Investigation of mineral reactivity in CO2-bearing solutions: An application to CCUS in geothermal reservoirs”.


Doctoral Examination Mahmoud Hefny

On Thursday, March 26th, Mahmoud Hefny has successfully defended his PhD thesis, entitled: “Rock physics and heterogeneities characterization controlling fluid flow in reservoir rocks”.


Doctoral Examination Philipp Schädle

On Tuesday, March 24th, Philipp Schädle has successfully defended his PhD thesis, entitled: “Flow and transport through fractured rock – numerical approaches to account for fracture heterogeneity”.


Up-to date news from the CORONAVIRUS RESOURCE CENTER at Johns Hopkins University (USA)

Corona Virus map from John Hopkins University

For information on ETH’s rules and recommendations concerning the Coronavirus situation
read here


New photo gallery of geothermal exploration for green energy in Mongolia. Friedemann Samrock

The burning of coal for heating is a major cause of harmful air pollution and massive greenhouse gas emissions in Mongolia’s cities. This photo gallery provides authentic insights into the progress of introducing a scientific framework for geothermal exploration.
read more


Doctoral Examination Edoardo Rossi

On Tuesday, January 7th, Edoardo Rossi has successfully passed the Doctoral Examination. Edoardo’s PhD thesis title: “Combined Thermo-Mechanical Drilling technology to enhance access to deep geo-resources”.


Doctoral Examination Anniina Kittilä

On Monday, September 9th, Anniina Kittilä has successfully passed the Doctoral Examination. Anniina’s PhD thesis title: “Tracer-based characterization of stimulation enhanced pore volume and application of novel DNA nanotracers in fractured crystalline rock”.


SNF Ambizione Grant

Dr. Allan Leal has been awarded an SNF Ambizione grant to develop innovative computational methods for ultra-fast simulations of coupled physical and chemical processes using machine learning and GPU parallel computing, starting on January 1, 2019.
Link to personal homepage of Allan Leal


SNF R4D Grant

Dr. Friedemann Samrock has been awarded an SNF R4D grant to develop a geoscientific framework for geothermal exploration and energy utilization in Mongolia, started on September 1, 2018.
Link to Project’s page of SNF

Inauguration of commemorative plaque for the Werner Siemens Foundation


© Felix Wey

Werner Siemens Foundation visits the Geothermal Energy & Geofluids Group and has a guided tour at the GEG Laboratories.

read more on ETH Foundation webpage

read more on News of GEG webpage

GEG Videos

Inexhaustible resource of clean, renewable Geothermal Energy.
© ETH Zurich

Grimsel rock lab, feasibility of geothermal power plants.
© ETH Zurich

Grimsel rock laboratory, safer drilling methods.
© 3sat nano

A short video about ETH Zurich
© 2018 ETH Zurich

GEG Events

Relating Darcy-scale chemical reaction order to pore-scale spatial heterogeneity

Powei Huang (GEG group presentation)
GEG Meetings, ETH Zurich <read more>

Grid Modelling Basics: Hey CPG, Show Me the Money (Value)

Jonathan Ogland-Hand (GEG group presentation)
GEG Meetings, ETH Zurich <read more>


Philipp Schädle (GEG group presentation)
GEG Meetings, ETH Zurich <read more>


Daniel Birdsell (GEG group presentation)
GEG Meetings, ETH Zurich <read more>

GEG Open Positions

released 14.09.2020 New

PhD position – IDEA League – Using CO2 instead of water as the subsurface energy extraction fluid in EGS and in sedimentary basins

read more click here

released 27.08.2020 (CLOSED)

Postdoc position to investigate thermally-induced density-driven flow in transparent porous media using combined PIV-LIF techniques

GEG Papers in 2020

32 publications in 2020

Combining brine or CO2 geothermal preheating with low-temperature waste heat: A higher-efficiency hybrid geothermal power system
Garapati, N., B.M. Adams, M.R. Fleming, T.H. Kuehn, and M.O. Saar Journal of CO2 Utilization, 42, 2020. [Download PDF] [View Abstract]Hybrid geothermal power plants operate by using geothermal fluid to preheat the working fluid of a higher temperature power cycle for electricity generation. This has been shown to yield higher electricity generation than the combination of a stand-alone geothermal power plant and the higher-temperature power cycle. Here, we test both a direct CO2 hybrid geothermal system and an indirect brine hybrid geothermal system. The direct CO2 hybrid geothermal system is a CO2 Plume Geothermal (CPG) system, which uses CO2 as the subsurface working fluid, but with auxiliary heat addition to the geologically produced CO2 at the surface. The indirect brine geothermal system uses the hot geologically produced brine to preheat the secondary working fluid (CO2) within a secondary power cycle. We find that the direct CPG-hybrid system and the indirect brine-hybrid system both can generate 20 % more electric power than the summed power of individual geothermal and auxiliary systems in some cases. Each hybrid system has an optimum turbine inlet temperature which maximizes the electric power generated, and is typically between 100 ◦C and 200 ◦C in the systems examined. The optimum turbine inlet temperature tends to occur where the geothermal heat contribution is between 50 % and 70 % of the total heat addition to the hybrid system. Lastly, the CO2 direct system has lower wellhead temperatures than indirect brine and therefore can utilize lower temperature resources.
Synchrotron-based pore-network modeling of two-phase flow in Nubian Sandstone and implications for capillary trapping of carbon dioxide
Hefny, M., C.-Z. Qin, M.O. Saar, and A. Ebigbo International Journal of Greenhouse Gas Control, 103/1031642, 2020. [Download PDF] [View Abstract]Depleted oil fields in the Gulf of Suez (Egypt) can serve as geothermal reservoirs for power production using a CO2-Plume Geothermal (CPG) system, while geologically sequestering CO2. This entails the injection of a substantial amount of CO2 into the highly permeable brine-saturated Nubian Sandstone. Numerical models of two-phase flow processes are indispensable for predicting the CO2-plume migration at a representative geological scale. Such models require reliable constitutive relationships, including relative permeability and capillary pressure curves. In this study, quasi-static pore-network modeling has been used to simulate the equilibrium positions of fluid-fluid interfaces, and thus determine the capillary pressure and relative permeability curves. Three-dimensional images with a voxel size of 0.65 μm3 of a Nubian Sandstone rock sample have been obtained using Synchrotron Radiation X-ray Tomographic Microscopy. From the images, topological properties of pores/throats were constructed. Using a pore-network model, we performed a sequential primary drainage–main imbibition cycle of quasi-static invasion in order to quantify (1) the CO2 and brine relative permeability curves, (2) the effect of initial wetting-phase saturation (i.e. the saturation at the point of reversal from drainage to imbibition) on the residual–trapping potential, and (3) study the relative permeability–saturation hysteresis. The results illustrate the sensitivity of the pore-scale fluid-displacement and trapping processes on some key parameters (i.e. advancing contact angle, pore-body-to-throat aspect ratio, and initial wetting-phase saturation) and improve our understanding of the potential magnitude of capillary trapping in Nubian Sandstone.
Global Frictional Equilibrium via Stochastic, Local Coulomb Frictional Slips
Zhang, S., and X. Ma ESSOAr, 2020. [Download PDF]
Hydromechanical processes and their influence on the stimulation effected volume: observations from a decameter-scale hydraulic stimulation project
Krietsch, H., V.S. Gischig, J. Doetsch, K.F. Evans, L. Villliger, M. Jalali, B. Valley, S. Löw, and F. Amman Solid Earth, 11/5, pp. 1699-1729, 2020. [Download PDF] [View Abstract]Six hydraulic shearing experiments have been conducted in the framework of the In-situ Stimulation and Circulation experiment within a decameter-scale crystalline rock volume at the Grimsel Test Site, Switzerland. During each experiment fractures associated with one out of two shear zone types were hydraulically reactivated. The two shear zone types differ in terms of tectonic genesis and architecture. An extensive monitoring system of sensors recording seismicity, pressure and strain was spatially distributed in 11 boreholes around the injection locations. As a result of the stimulation, the near wellbore transmissivity increased up to 3 orders in magnitude.With one exception, jacking pressures were unchanged by the stimulations. Transmissivity change, jacking pressure and seismic activity were different for the two shear zone types, suggesting that the shear zone architectures govern the seismo-hydromechanical response. The elevated fracture fluid pressures associated with the stimulations propagated mostly along the stimulated shear zones. The absence of high-pressure signals away from the injection point for most experiments (except two out of six experiments) is interpreted as channelized flow within the shear zones. The observed deformation field within 15–20m from the injection point is characterized by variable extensional and compressive strain produced by fracture normal opening and/or slip dislocation, as well as stress redistribution related to these processes. At greater distance from the injection location, strain measurements indicate a volumetric compressive zone, in which strain magnitudes decrease with increasing distance. These compressive strain signals are interpreted as a poro-elastic far-field response to the emplacement of fluid volume around the injection interval. Our hydromechanical data reveal that the overall stimulation effected volume is significantly larger than implied by the seismicity cloud and can be subdivided into a primary stimulated and secondary effected zone.
Hydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems
Gischig, V.S., D. Giardini, F. Amann, "et al.", Keith F. Evans, "et al.", A. Kittilä, X. Ma, "et al.", M.O. Saar, and "et al." Geomechanics for Energy and the Environment, 100175, 2020. [Download PDF] [View Abstract]The history of reservoir stimulation to extract geothermal energy from low permeability rock (i.e. so-called petrothermal or engineered geothermal systems, EGS) highlights the difficulty of creating fluid pathways between boreholes, while keeping induced seismicity at an acceptable level. The worldwide research community sees great value in addressing many of the unresolved problems in down-scaled in-situ hydraulic stimulation experiments. Here, we present the rationale, concepts and initial results of stimulation experiments in two underground laboratories in the crystalline rocks of the Swiss Alps. A first experiment series at the 10 m scale was completed in 2017 at the Grimsel Test Site, GTS. Observations of permeability enhancement and induced seismicity show great variability between stimulation experiments in a small rock mass body. Monitoring data give detailed insights into the complexity of fault stimulation induced by highly heterogeneous pressure propagation, the formation of new fractures and stress redistribution. Future experiments at the Bedretto Underground Laboratory for Geoenergies, BULG, are planned to be at the 100 m scale, closer to conditions of actual EGS projects, and a step closer towards combining fundamental process-oriented research with testing techniques proposed by industry partners. Thus, effective and safe hydraulic stimulation approaches can be developed and tested, which should ultimately lead to an improved acceptance of EGS.
Permeability Impairment and Salt Precipitation Patterns during CO2 Injection into Single Natural Brine-filled Fractures
Lima, M., P. Schädle, C. Green, D. Vogler, M.O. Saar, and X.-Z. Kong Water Resources Research, 56/8, pp. e2020WR027213, 2020. [Download PDF] [View Abstract]Formation dry-out in fracture-dominated geological reservoirs may alter the fracture space, impair rock absolute permeability and cause a significant decrease in well injectivity. In this study, we numerically model the dry-out processes occurring during supercritical CO2 (scCO2) injection into single brine-filled fractures and evaluate the potential for salt precipitation under increasing effective normal stresses in the evaporative regime. We use an open-source, parallel finite-element framework to numerically model two-phase flow through 2-Dimensional fracture planes with aperture fields taken from naturally fractured granite cores at the Grimsel Test Site in Switzerland. Our results reveal a displacement front and a subsequent dry-out front in all simulated scenarios, where higher effective stresses caused more flow channeling, higher rates of water evaporation and larger volumes of salt precipitates. However, despite the larger salt volumes, the permeability impairment was lower at higher effective normal stresses. We conclude that the spatial distribution of the salt, precipitated in fractures with heterogeneous aperture fields, strongly affects the absolute permeability impairment caused by formation dry-out. The numerical simulations assist in understanding the behavior of the injectivity in fractures and fracture networks during subsurface applications that involve scCO2 injection into brine.
A Numerical Investigation into Key Factors Controlling Hard Rock Excavation via Electropulse Stimulation
Vogler, D., S.D.C. Walsh, and M.O. Saar Journal of Rock Mechanics and Geotechnical Engineering, 12/4, pp. 793-801, 2020. [Download PDF] [View Abstract]Electropulse stimulation provides an energy-efficient means of excavating hard rocks through repeated application of high voltage pulses to the rock surface. As such, it has the potential to confer significant advantages to mining and drilling operations for mineral and energy resources. Nevertheless, before these benefits can be realized, a better understanding of these processes is required to improve their deployment in the field. In this paper, we employ a recently developed model of the grain-scale processes involved in electropulse stimulation to examine excavation of hard rock under realistic operating conditions. To that end, we investigate the maximum applied voltage within ranges of 120~kV to 600~kV, to observe the onset of rock fragmentation. We further study the effect of grain size on rock breakage, by comparing fine and coarse grained rocks modeled after granodiorite and granite, respectively. Lastly, the pore fluid salinity is investigated, since the electric conductivity of the pore fluid is shown to be a governing factor for the electrical conductivity of the system. This study demonstrates that all investigated factors are crucial to the efficiency of rock fragmentation by electropulsing.
Accelerating Reactive Transport Modeling: On‑Demand Machine Learning Algorithm for Chemical Equilibrium Calculations
Leal, A. M. M., S. Kyas, D. Kulik, and M. O. Saar Transport in Porous Media, 133, pp. 161-204, 2020. [Download PDF] [View Abstract]During reactive transport modeling, the computing cost associated with chemical equilibrium calculations can be 10 to 10,000 times higher than that of fluid flow, heat transfer, and species transport computations. These calculations are performed at least once per mesh cell and once per time step, amounting to billions of them throughout the simulation employing high-resolution meshes. To radically reduce the computing cost of chemical equilibrium calculations (each requiring an iterative solution of a system of nonlinear equa-tions), we consider an on-demand machine learning algorithm that enables quick and accu-rate prediction of new chemical equilibrium states using the results of previously solved chemical equilibrium problems within the same reactive transport simulation. The training operations occur on-demand, rather than before the start of the simulation when it is not clear how many training points are needed to accurately and reliably predict all possible chemical conditions that may occur during the simulation. Each on-demand training opera-tion consists of fully solving the equilibrium problem and storing some key information about the just computed chemical equilibrium state (which is used subsequently to rap-idly predict similar states whenever possible). We study the performance of the on-demand learning algorithm, which is mass conservative by construction, by applying it to a reactive transport modeling example and achieve a speed-up of one or two orders of magnitude (depending on the activity model used). The implementation and numerical tests are car-ried out in Reaktoro (reakt oro.org), a unified open-source framework for modeling chemi-cally reactive systems.
Coulomb Criterion - Bounding Crustal Stress Limit and Intact Rock Failure: Perspectives
Ma, X., M.O. Saar, and L.-S. Fan Powder Technology, 374, pp. 106-110, 2020. [Download PDF] [View Abstract]In this perspective article, we illustrate the importance and versatility of the Coulomb criterion that serves as a bridge between the fields of powder technology and rock mechanics/geomechanics. We first describe the essence of the Coulomb criterion and its physical meaning, revealing surprising similarities regarding its applica- tions between both fields. We then discuss the rock mechanics applications and limitations at two extreme scales, the Earth's crust (tens of kilometers) and intact rocks (meters). We finally offer thoughts on bridging these scales. The context of the article is essential not only to the rock mechanics/geomechanics community but also to a broader powder technology community.
Simulation of rock failure modes in thermal spallation drilling
Vogler, D., S.D.C. Walsh, Ph. Rudolf von Rohr, and M.O. Saar Acta Geotechnica, 15/8, pp. 2327-2340, 2020. [Download PDF] [View Abstract]Thermal spallation drilling is a contact-less means of borehole excavation that works by exposing a rock surface to a high-temperature jet flame. In this study, we investigate crucial factors for the success of such thermal drilling operations using numerical simulations of the thermomechanical processes leading to rock failure at the borehole surface. To that end, we integrate a model developed for spalling failure with our thermomechanical simulations. In particular, we consider the role of material heterogeneities, maximum jet-flame temperature and maximum jet-flame temperature rise time on the onset of inelastic deformation and subsequent damage. We further investigate differences in energy consumption for the studied system configurations. The simulations highlight the importance of material composition, as thermal spallation is favored in fine-grained material with strong material heterogeneity. The model is used to test the relationship between the jet-flame temperature and the onset of thermal spallation.
Contact between rough rock surfaces using a dual mortar method
von Planta, C., D. Vogler, P. Zulian, M.O. Saar, and R. Krause International Journal of Rock Mechanics and Mining Sciences (IJRMMS), 133, pp. 104414, 2020. [Download PDF] [View Abstract]The mechanical behavior of fractures in rocks has strong implications for reser- voir engineering applications. Deformations, and the corresponding change in contact area and aperture field, impact rock fracture stiffness and permeability, thus altering the reservoir properties significantly. Simulating contact between fractures is numerically difficult as the non-penetration constraints lead to a nonlinear problem and the surface meshes of the solid bodies on the opposing fracture sides may be non-matching. Furthermore, due to the complex geome- try, the non-penetration constraints must be updated throughout the solution procedure. Here we present a novel implementation of a dual mortar method for contact. It uses a non-smooth sequential quadratic programming method as solver, and is suitable for parallel computing. We apply it to a two body con- tact problem consisting of realistic rock fracture geometries from the Grimsel underground laboratory in Switzerland. The contributions of this article are: 1) a novel, parallel implementation of a dual mortar and non-smooth sequential quadratic programming method, 2) realistic rock geometries with rough sur- faces, and 3) numerical examples, which prove that the dual mortar method is capable of replicating the nonlinear closure behavior of fractures observed in laboratory experiments.
The effect of mineral dissolution on the effective stress law for permeability in a tight sandstone
Ma, J., L. Querci, B. Hattendorf, M.O. Saar, and X.-Z. Kong Geophysical Research Letters, 2020. [Download PDF] [View Abstract]We present flow-through experiments to delineate the processes involved in permeability changes driven by effective stress variations and mineral cement dissolution in porous rocks. CO2-enriched brine is injected continuously into a tight sandstone under in-situ reservoir conditions for 455 hours. Due to the dolomite cement dissolution, the bulk permeability of the sandstone specimen significantly increases, and two dissolution passages are identified near the fluid inlet by X-ray CT imaging. Pre- and post-reaction examinations of the effective stress law for permeability suggest that after reaction the bulk permeability is more sensitive to pore pressure changes and less sensitive to effective stress changes. These observations are corroborated by Scanning Electron Microscopy and X-ray CT observations. This study deepens our understanding of the effect of mineral dissolution on the effective stress law for permeability, with implications for characterizing subsurface mass and energy transport, particularly during fluid injection/production into/from geologic reservoirs.
A laboratory approach for the calibration of seismic data in the western part of the Swiss Molasse Basin: the case history of well Humilly-2 (France) in the Geneva area
Hefny, M., A. Zappone, Y. Makhloufi, A. de Haller, and A. Moscariello Swiss Journal of Geosciences , 113/11, 2020. [Download PDF] [View Abstract]A collection of 81 plugs were obtained from the Humilly-2 borehole (France), that reached the Permo-Carboniferous sediments at a depth of 3051 m. Experimental measurements of physical parameters and mineralogical analysis were performed to explore the links between sedimentary facies and seismic characteristics and provide a key tool in the interpretation of seismic field data in terms of geological formations. The plugs, cylinders of 22.5 mm in diameter and ~30 mm in length were collected parallel and perpendicular to the bedding in order to explore their anisotropy. Ultrasound wave propagation was measured at increasing confining pressure conditions up to 260 MPa, a pressure where all micro-fractures are considered closed. The derivatives of velocities with pressure were established, allowing the simulation of lithological transitions at in-situ conditions. At room conditions, measured grain densities [kg/m3] range from 2630 to 2948 and velocities vary from 4339 to 6771 m/s and 2460 to 3975m/s for P- and S-waves propagation modes, respectively. The largest seismic-reflections coefficients were calculated for the interface between the evaporitic facies of the Keuper (Lettenkohle) and the underlying Muschelkalk carbonates (Rc= 0.3). The effective porosity has a range of 0.23% to 16.65%, while the maximum fluid permeability [m2] is 9.1e-16. A positive correlation between porosity and ultrasound velocity has been observed for P- and S-waves. The link between velocities and modal content of quartz, dolomite, calcite, and micas has been explored. This paper presents a unique set of seismic parameters potentially useful for the calibration of seismic data in the Geneva Molasse Basin.
Increased Power Generation due to Exothermic Water Exsolution in CO2 Plume Geothermal (CPG) Power Plants
Fleming, M.R., B.M. Adams, T.H. Kuehn, J.M. Bielicki, and M.O. Saar Geothermics, 88/101865, 2020. [Download PDF] [View Abstract]A direct CO2-Plume Geothermal (CPG) system is a novel technology that uses captured and geologically stored CO2 as the subsurface working uid in sedimentary basin reservoirs to extract geothermal energy. In such a CPG system, the CO2 that enters the production well is likely saturated with H2O from the geothermal reser- voir. However, direct CPG models thus far have only considered energy production via pure (i.e. dry) CO2 in the production well and its direct conversion in power generation equipment. Therefore, we analyze here, how the wellhead uid pressure, temperature, liquid water fraction, and the resultant CPG turbine power output are impacted by the production of CO2 saturated with H2O for reservoir depths ranging from 2.5 km to 5.0 km and geothermal temperature gradients between 20 °C/km and 50 °C/km. We demonstrate that the H2O in solution is exothermically exsolved in the vertical well, increasing the uid temperature relative to dry CO2, resulting in the production of liquid H2O at the wellhead. The increased wellhead uid temperature increases the turbine power output on average by 15% to 25% and up to a maximum of 41%, when the water enthalpy of exsolution is considered and the water is (conservatively) removed before the turbine, which decreases the uid mass ow rate through the turbine and thus power output. We show that the enthalpy of exsolution and the CO2-H2O so- lution density are fundamental components in the calculation of CPG power generation and thus should not be neglected or substituted with the properties of dry CO2.
Contributions of visible and invisible pores to reactive transport in dolomite
Tutolo, B., A. Luhmann, X.-Z. Kong, B. Bagley, D. Alba-Venero, N. Mitchell, M.O. Saar, and W.E. Seyfried Geochemical Perspectives Letters, I4, pp. 42-46, 2020. [Download PDF] [View Abstract]Recent technical advances have demonstrated the importance of pore-scale geochemical processes for governing Earth's evolution. However, the contribution of pores at different scales to overall geochemical reactions remains poorly understood. Here, we integrate multiscale characterization and reactive transport modeling to study the contribution of pore-scale geochemical proceses to the hydrogeochemical evolution of dolomite rock samples during CO2-driven dissolution experiments. Our results demonstrate that approximately half of the total pore volume is invisible at the scale of commonly used imaging techniques. Comparison of pre- and post-experiment analyses demonstrate that porosity-increasing, CO2-driven dissolution processes preferentially occur in pores 600 nm – 5 μm in size, but pores <600 nm in size show no change during experimental alteration. This latter observation, combined with the anomalously high rates of trace element release during the experiments, suggests that nanoscale pores are accessible to through-flowing fluids. A three-dimensional simulation performed directly on one of the samples shows that steady-state pore-scale trace element reaction rates must be ~10× faster than that of dolomite in order to match measured effluent concentrations, consistent with the large surface area-to-volume ratio in these pores. Together, these results yield a new conceptual model of pore-scale processes, and urge caution when interpreting the trace element concentrations of ancient carbonate rocks.
Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem
Kyas, S., S. Repin, J. M. Nordbotten, and K. Kumar Computers & Mathematics with Applications, pp. 1-28, 2020. [Download PDF] [View Abstract]The paper is concerned with guaranteed a posteriori error estimates for a class of evolutionary problems related to poroelastic media governed by the quasi-static linear Biot equations. The system is decoupled by employing the fixed-stress split scheme, which leads to an iteratively solved semi-discrete system. The error bounds are derived by combining a posteriori estimates for contractive mappings with the functional type error control for elliptic partial differential equations. The estimates are applicable to any approximation in the admissible functional space and are independent of the discretization method. They are fully computable, do not contain mesh-dependent constants, and provide reliable global estimates of the error measured in the energy norm. Moreover, they suggest efficient error indicators for the distribution of local errors and can be used in adaptive procedures.
Solute tracer test quantification of the effects of hot water injection into hydraulically stimulated crystalline rock
Kittilä, A., M.R. Jalali, M.O. Saar, and X.-Z. Kong Geothermal Energy, 8/17, 2020. [Download PDF] [View Abstract]When water is injected into a fracture-dominated reservoir that is cooler or hotter than the injected water, the reservoir permeability is expected to be altered by the injection-induced thermo-mechanical effects, resulting in the redistribution of fluid flow in the reservoir. These effects are important to be taken into account when evaluating the performance and lifetime particularly of Enhanced Geothermal Systems (EGS). In this paper, we compare the results from two dye tracer tests, conducted before (at ambient temperature of 13 °C) and during the injection of 45 °C hot water into a fractured crystalline rock at the Grimsel Test Site in Switzerland. Conducting a moment analysis on the recovered tracer residence time distribution (RTD) curves, we observe, after hot water injection, a significant decrease in the total tracer recovery. This recovery decrease strongly suggests that fluid flow was redistributed in the studied rock volume and that the majority of the injected water was lost to the far-field. Furthermore, by using temperature measurements, obtained from the same locations as the tracer RTD curves, we conceptualize an approach to estimate the fracture surface area contributing to the heat exchange between the host rock and the circulating fluid. Our moment analysis and simplified estimation of fracture surface area provide insights into the hydraulic properties of the hydraulically active fracture system and the changes in fluid flow. Such insights are important to assess the heat exchange performance of a geothermal formation during fluid circulation and to estimate the lifetime of the geothermal formation, particularly in EGS.
Comparative study of Basel EGS reservoir faults inferred from analysis of microseismic cluster datasets with fracture zones obtained from well log analysis
Ziegler, M., and K.F. Evans Journal of Structural Geology, 130, 2020. [Download PDF] [View Abstract]Petrothermal systems seek to extract energy from hot, low-permeability rocks that in northern Switzerland lie at 4–6 km depth. Permeability is enhanced by performing large ‘hydraulic stimulation’ injections, such as occurred in the 5 km deep well at Basel, Switzerland. Knowledge of the discontinuity properties and distribution in target reservoirs can help design such stimulations, but characterisation is challenging because of limited rock mass exposure. Rock mass fractures below Basel were investigated in previous studies by analyses of acoustic tele- viewer data of the Basel-1 well and by fault plane solutions. In addition, seismic events with high similarity of seismic waveforms were grouped into clusters and interpreted to have originated from slip of patches of a common fault or fault zone. In this study we investigate the orientations of fault patches from seismic clusters, considering relative location errors of cluster events with Monte-Carlo simulations, and use common events in clusters ranging in size from few 10s to many 100s of metres to explore the internal architecture of larger fault zones at Basel. We nd that the orientations of microseismically-inferred faults and borehole fractures are similar and that fracture zones consist of sub-parallel or ‘anastomosing’ fractures.
Changing Flow Paths Caused by Simultaneous Shearing and Fracturing Observed During Hydraulic Stimulation
Krietsch, H., L. Villiger, J. Doetsch, V. Gischig, K.F. Evans, B. Brixel, M.R. Jalali, S. Loew, D. Giardini, and F. Amann Geophysical Research Letters, 47, 2020. [Download PDF] [View Abstract]We monitored the seismohydromechanical rock mass response to high‐pressure fluid injection during a decameter‐scale hydraulic stimulation experiment in crystalline rock at the Grimsel Test Site, Switzerland. Time series recorded at two pressure monitoring locations show abrupt pressure increases that change in amplitude and appearance between subsequent stimulation cycles. Induced seismicity correlates with the propagation of one of these pressure fronts. Deformation data along the same shear zone shows permanent fracture dislocation preceded by strong transient fracture opening. We interpret these observations as nonlinear pressure diffusion along flow channels that reorganize in response to hydromechanical effects during stimulation. Combining these observations with the in situ stress field estimated before stimulation, we argue that the underlying hydromechanical processes involve mixed‐mode stimulation with both Mode I and II/III fracture dislocation.
Combining natural gas recovery and CO2-based geothermal energy extraction for electric power generation
Ezekiel, J., A. Ebigbo, B. M. Adams, and M. O. Saar Applied Energy, 269/115012, 2020. [Download PDF] [View Abstract]We investigate the potential for extracting heat from produced natural gas and utilizing supercritical carbon dioxide (CO2) as a working uid for the dual purpose of enhancing gas recovery (EGR) and extracting geo- thermal energy (CO2-Plume Geothermal – CPG) from deep natural gas reservoirs for electric power generation, while ultimately storing all of the subsurface-injected CO2. Thus, the approach constitutes a CO2 capture double- utilization and storage (CCUUS) system. The synergies achieved by the above combinations include shared infrastructure and subsurface working uid. We integrate the reservoir processes with the wellbore and surface power-generation systems such that the combined system’s power output can be optimized. Using the subsurface uid ow and heat transport simulation code TOUGH2, coupled to a wellbore heat-transfer model, we set up an anticlinal natural gas reservoir model and assess the technical feasibility of the proposed system. The simulations show that the injection of CO2 for natural gas recovery and for the establishment of a CO2 plume (necessary for CPG) can be conveniently combined. During the CPG stage, following EGR, a CO2-circulation mass owrate of 110 kg/s results in a maximum net power output of 2 MWe for this initial, conceptual, small system, which is scalable. After a decade, the net power decreases when thermal breakthrough occurs at the production wells. The results con rm that the combined system can improve the gas eld’s overall energy production, enable CO2 sequestration, and extend the useful lifetime of the gas eld. Hence, deep (partially depleted) natural gas re- servoirs appear to constitute ideal sites for the deployment of not only geologic CO2 storage but also CPG.
The influence of thermal treatment on rock-bit interaction: a study of a combined thermo-mechanical drilling (CTMD) concept
Rossi, E. , M.O. Saar, and Ph. Rudolf von Rohr Geothermal Energy, 8/16, 2020. [Download PDF] [View Abstract]To improve the economics and viability of accessing deep georesources, we propose a combined thermo–mechanical drilling (CTMD) method, employing a heat source to facilitate the mechanical removal of rock, with the aim of increasing drilling performance and thereby reducing the overall costs, especially for deep wells in hard rocks. In this work, we employ a novel experiment setup to investigate the main parameters of interest during the interaction of a cutter with the rock material, and we test untreated and thermally treated sandstone and granite, to understand the underlying rock removal mechanism and the resulting drilling performance improvements achievable with the new approach. We find that the rock removal process can be divided into three main regimes: first, a wear-dominated regime, followed by a compression-based progression of the tool at large penetrations, and a final tool fall-back regime for increasing scratch distances. We calculate the compressive rock strengths from our tests to validate the above regime hypothesis, and they are in good agreement with literature data, explaining the strength reduction after treatment of the material by extensive induced thermal cracking of the rock. We evaluate the new method’s drilling performance and confirm that thermal cracks in the rock can considerably enhance subsequent mechanical rock removal rates and related drilling performance by one order of magnitude in granite, while mainly reducing the wear rates of the cutting tools in sandstone.
Injection-induced slip heterogeneity on faults in shale reservoirs
Jia, Y., W. Wu, and X.-Z. Kong International Journal of Rock Mechanics and Mining Sciences, 131, pp. 1-6, 2020. [Download PDF] [View Abstract]Managing fluid stimulation protocols is an effective means to mitigate the risk of injection-induced earthquakes during shale gas development. The success of these protocols is dependent on our understanding of fluid pressure heterogeneity and the associated inhomogeneous slip on critically stressed faults. Here we show the evolution of velocity-weakening zone on a simulated fault, derived from fluid injection and velocity stepped experiments, and the corresponding non-uniform fluid pressure distribution, recovered from coupled hydro-mechanical simulations. Our results indicate that the sharp extension of velocity-weakening zone occurs before the nucleation of fault rupture, which could be an indicator to avoid the reactivation of other fault patches beyond the stimulated zone. The dynamic rupture is estimated to extend much faster than the maximum speed of the velocity-weakening zone front. We infer that the velocity-weakening zone may further expand and fully control the fault behavior after multiple slip events.
Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia
Kaufl, S., V. Grayver, J. Comeau, V. Kuvshinov, M. Becken, J. Kamm, B. Erdenechimeg, and D. Sodnomsambuu Geophysical Journal International, 221/1002-1028, 2020. [Download PDF] [View Abstract]Central Mongolia is a prominent region of intracontinental surface deformation and intraplate volcanism. To study these processes, which are poorly understood, we collected magnetotelluric (MT) data in the Hangai and Gobi-Altai region in central Mongolia and derived the first 3-D resistivity model of the crustal and upper mantle structure in this region. The geological and tectonic history of this region is complex, resulting in features over a wide range of spatial scales, which that are coupled through a variety of geodynamic processes. Many Earth properties that are critical for the understanding of these processes, such as temperature as well as fluid and melt properties, affect the electrical conductivity in the subsurface. 3-D imaging using MT can resolve the distribution of electrical conductivity within the Earth at scales ranging from tens of metres to hundreds of kilometres, thereby providing constraints on possible geodynamic scenarios. We present an approach to survey design, data acquisition, and inversion that aims to bridge various spatial scales while keeping the required field work and computational cost of the subsequent 3-D inversion feasible. MT transfer functions were estimated for a 650 × 400 km2 grid, which included measurements on an array with regular 50 × 50 km2 spacing and along several profiles with a denser 5–15 km spacing. The use of telluric-only data loggers on these profiles allowed for an efficient data acquisition with a high spatial resolution. A 3-D finite element forward modelling and inversion code was used to obtain the resistivity model. Locally refined unstructured hexahedral meshes allow for a multiscale model parametrization and accurate topography representation. The inversion process was carried out over four stages, whereby the result from each stage was used as input for the following stage that included a finer model parametrization and/or additional data (i.e. more stations, wider frequency range). The final model reveals a detailed resistivity structure and fits the observed data well, across all periods and site locations, offering new insights into the subsurface structure of central Mongolia. A prominent feature is a large low-resistivity zone detected in the upper mantle. This feature suggests a non-uniform lithosphere-asthenosphere boundary that contains localized upwellings that shallow to a depth of 70 km, consistent with previous studies. The 3-D model reveals the complex geometry of the feature, which appears rooted below the Eastern Hangai Dome with a second smaller feature slightly south of the Hangai Dome. Within the highly resistive upper crust, several conductive anomalies are observed. These may be explained by late Cenozoic volcanic zones and modern geothermal areas, which appear linked to mantle structures, as well as by major fault systems, which mark terrane boundaries and mineralized zones. Well resolved, heterogeneous low-resistivity zones that permeate the lower crust may be explained by fluid-rich domains.
Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect
Comeau, J., M. Becken, S. Kaufl, V. Grayver, V. Kuvshinov, Ts. Shoovdor, B. Erdenechimeg, and D. Sodnomsambuu Earth, Planets and Space, 72/1--13, pp. 1-13, 2020. [Download PDF] [View Abstract]Southern Mongolia is part of the Central Asian Orogenic Belt, the origin and evolution of which is not fully known and is often debated. It is composed of several east–west trending lithostratigraphic domains that are attributed to an assemblage of accreted terranes or tectonic zones. This is in contrast to Central Mongolia, which is dominated by a cratonic block in the Hangai region. Terranes are typically bounded by suture zones that are expected to be deep-reaching, but may be difficult to identify based on observable surface fault traces alone. Thus, attempts to match lithostratigraphic domains to surface faulting have revealed some disagreements in the positions of suspected terranes. Furthermore, the subsurface structure of this region remains relatively unknown. Therefore, high-resolution geophysical data are required to determine the locations of terrane boundaries. Magnetotelluric data and telluric-only data were acquired across Southern Mongolia on a profile along a longitude of approximately 100.5° E. The profile extends ~ 350 km from the Hangai Mountains, across the Gobi–Altai Mountains, to the China–Mongolia border. The data were used to generate an electrical resistivity model of the crust and upper mantle, presented here, that can contribute to the understanding of the structure of this region, and of the evolution of the Central Asian Orogenic Belt. The resistivity model shows a generally resistive upper crust (0–20 km) with several anomalously conductive features that are believed to indicate suture zones and the boundaries of tectonic zones. Moreover, their spatial distribution is coincident with known surface fault segments and active seismicity. The lower crust (30–45 km) becomes generally less resistive, but contains an anomalously conductive feature below the Gobi–Altai zone. This potentially agrees with studies that have argued for an allochthonous lower crust below this region that has been relaminated and metamorphosed. Furthermore, there is a large contrast in the electrical properties between identified tectonic zones, due to their unique tectonic histories. Although penetration to greater depths is limited, the magnetotelluric data indicate a thick lithosphere below Southern Mongolia, in contrast to the previously reported thin lithosphere below Central Mongolia.
A combined thermo-mechanical drilling technology for deep geothermal and hard rock reservoirs
Rossi, E., S. Jamali, V. Wittig, M.O. Saar, and Ph. Rudolf von Rohr Geothermics, 85/101771, 2020. [Download PDF] [View Abstract]Combined thermo-mechanical drilling is a novel technology to enhance drilling performance in deep hard rock formations. In this work, we demonstrate this technology in the field by implementing the concept on a full-scale drilling rig, and we show its feasibility under realistic process conditions. We provide evidence that the novel drilling method can increase the removal performance in hard rocks by up to a factor of three, compared to conventional drilling methods. From the findings of this work, we conclude that integration of thermal assistance to conventional rotary drilling constitutes an interesting approach to facilitate the drilling process, and therefore increase the access viability to deep georesources in hard rocks.
Field test of a Combined Thermo-Mechanical Drilling technology. Mode I: Thermal spallation drilling
Rossi, E., S. Jamali, M.O. Saar, and Ph. Rudolf von Rohr Journal of Petroleum Science and Engineering, 190/107005, 2020. [Download PDF] [View Abstract]Accessing hydrocarbons, geothermal energy and mineral resources requires more and more drilling to great depths and into hard rocks, as many shallow resources in soft rocks have been mined already. Drilling into hard rock to great depths, however, requires reducing the effort (i.e., energy), time (i.e., increasing the rate of penetration) and cost associated with such operations. Thus, a Combined Thermo-Mechanical Drilling (CTMD) technology is proposed, which employs a heat source (e.g., a flame jet) and includes two main drilling modes: (I) Thermal spallation drilling, investigated here as a field test and (II) Flame-assisted rotary drilling, investigated as a field test in the companion paper. The CTMD technology is expected to reduce drilling costs, especially in hard rocks, by enhancing the rock penetration rate and increasing the bit lifetime. Mode I of the CTMD technology (thermal spallation drilling) is investigated here by implementing the concept on a full-scale drilling rig to investigate its feasibility and performance under realistic field conditions. During the test, the successful thermal spallation process is monitored, employing a novel acoustic emission system. The effects of thermal spallation in the granite rock are analyzed to provide conclusions regarding the rock removal performance and the application potential of the technology. The field test shows that thermal spallation of the granitic rock can be successfully achieved even when a liquid (water) is used as the drilling fluid, as long as the heat source is appropriately shielded by compressed-air jets. Thermal damage of the surrounding rock is investigated after the spallation test, employing micro-computer tomography imaging and modeling the stability of the cracks, generated by the spallation field test. This study shows that thermally induced damage is mainly confined within a narrow region close to the rock surface, suggesting that thermal spallation only marginally affects the overall mechanical stability of the borehole. Thus, this confirms that, as part of the Combined Thermo- Mechanical Drilling (CTMD) technology, thermal spallation drilling is a promising mode that has a high potential of facilitating the drilling of deep boreholes in hard rocks.
Field test of a Combined Thermo-Mechanical Drilling technology. Mode II: Flame-assisted rotary drilling
Rossi, E., S. Jamali, D. Schwarz, M.O. Saar, and Ph. Rudolf von Rohr Journal of Petroleum Science and Engineering, 190/106880, 2020. [Download PDF] [View Abstract]To enhance the drilling performance in deep hard rocks and reduce overall drilling efforts, this work proposes a Combined Thermo-Mechanical Drilling (CTMD) technology. This technology employs a heat source (e.g., a flame jet) and includes two main drilling modes: (I) thermal spallation drilling, investigated in the companion paper and (II) flame-assisted rotary drilling, investigated here as a field test. The CTMD technology is expected to reduce drilling efforts, especially in hard rocks, enhancing the rock penetration rate and increasing the bit lifetime, all of which reduces the drilling costs. The present work investigates Mode II (flame-assisted rotary drilling) of the CTMD technology by implementing the concept in an existing drilling rig and testing the technology under relevant process conditions. This contribution studies the underlying rock removal mechanism of CTMD and demonstrates its drilling performance, compared to conventional rotary drilling methods. Acoustic emission monitoring, and analysis of the collected drill cuttings provide multiple evidences for thermal-cracking-enhanced rock removal during the flame-assisted rotary drilling. This removal mechanism appears to represent an optimal compromise to minimize rock fragmentation and cutting transport efforts during drilling, compared to a less efficient mechanical scraping of the hard granite rock, observed during the standalone-mechanical drill test. The drilling performance, in terms of removal and wear rates, are evaluated for the flame-assisted rotary drilling. This shows that the proposed drilling approach is capable of enhancing the removal process in hard granite rock, by a factor of 2.5, compared to standalone-mechanical drilling. The implementation of this drilling approach into a conventional drilling system shows that integration of thermal assistance to conventional rotary drilling requires marginal technical efforts. Additionally, this technology can profit from established knowledge in conventional mechanical drilling, facilitating its implementation to improve drilling performance in hard rocks. Hence, this study demonstrates that the Combined Thermo- Mechanical Drilling method is feasible and concludes that this technology constitutes a promising approach to improve the drilling process, thereby increasing the viability of accessing deep geo-resources in hard rocks.
Characterization of the effects of hydraulic stimulation with tracer-based temporal moment analysis and tomographic inversion
Kittilä, A., M.R. Jalali, M. Somogyvári, K.F. Evans, M.O. Saar, and X.-Z. Kong Geothermics, 86/101820, 2020. [Download PDF] [View Abstract]Tracer tests were conducted as part of decameter-scale in-situ hydraulic stimulation experiments at the Grimsel Test Site to investigate the hydraulic properties of a stimulated crystalline rock volume and to study the stimulation-induced hydrodynamic changes. Temporal moment analysis yielded an increase in tracer swept pore volume with prominent flow channeling. Post-stimulation tomographic inversion of the hydraulic conductivity, K, distribution indicated an increase in the geometric mean of logK and a decrease in the Dykstra-Parsons heterogeneity index. These results indicate that new flow path connections were created by the stimulation programs, enabling the tracers to sweep larger volumes, while accessing flow paths with larger hydraulic conductivities.
On the directional dependency of Mode I fracture toughness in anisotropic rocks
Nejati, M., A. Aminzadeh, T. Driesner, and M.O. Saar Theoretical and Applied Fracture Mechanics, 107/102494, 2020. [Download PDF] [View Abstract]This paper presents a theoretical and experimental analysis of the directional variations of different measures of Mode fracture toughness in anisotropic rocks and possibly other types of solids. We report the theoretical basis for the directional dependence of three measures of fracture toughness: the critical stress intensity factor, the critical energy release rate and the critical strain energy density. The equivalency of these three measures in anisotropic materials is discussed. We then provide a full set of experimental results on the fracture toughness variation in an anisotropic rock that exhibits transverse isotropy. The results give supporting evidence that the critical Mode stress intensity factor in fact varies with direction based on a sinusoidal function. This indicates that there exist two principal values of the fracture toughness along with the principal material directions within the plane. Once these two principal values are determined, all three measures of the fracture toughness can be predicted in any direction, provided that the elastic constants of the material are known, and that the symmetry condition employed in this analysis is fulfilled.
Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with variational transfer operators
von Planta, C., D. Vogler, X. Chen, M.G.C. Nestola, M.O. Saar, and R. Krause Computational Geosciences, 2020. [Download PDF] [View Abstract]Fluid flow in rough fractures and the coupling with the mechanical behavior of the fractures pose great difficulties for numerical modeling approaches, due to complex fracture surface topographies, the non-linearity of hydromechanical processes and their tightly coupled nature. To this end, we have adapted a fictitious domain method to enable the simulation of hydromechanical processes in fracture-intersections. The main characteristic of the method is the immersion of the fracture domain, modelled as a linear elastic solid, in the surrounding fluid, modelled with the incompressible Navier Stokes equations. The fluid and the solid problems are coupled with variational transfer operators. Variational transfer operators are also used to solve contact within the fracture using a mortar approach and to generate problem specific fluid grids. With respect to our applications, the key features of the method are the usage of different finite element discretizations for the solid and the fluid problem and the automatically generated representation of the fluid-solid boundary. We demonstrate that the presented methodology resolves small-scale roughness on the fracture surface, while capturing fluid flow field changes during mechanical loading. Starting with 2D/3D benchmark simulations of intersected fractures, we end with an intersected fracture composed of complex fracture surface topographies, which are in contact under increasing loads. The contributions of this article are: (1) the application of the fictitious domain method to study flow in fractures with intersections, (2) a mortar based contact solver for the solid problem, (3) generation of problem specific grids using the geometry information from the variational transfer operators.
A lattice-Boltzmann study of permeability-porosity relationships and mineral precipitation patterns in fractured porous media
Ahkami, M., A. Parmigiani, P.R. Di Palma, M.O. Saar, and X.-Z. Kong Computational Geosciences, 2020. [Download PDF] [View Abstract]Mineral precipitation can drastically alter a reservoir’s ability to transmit mass and energy during various engineering/natural subsurface processes, such as geothermal energy extraction and geological carbon dioxide sequestration. However, it is still challenging to explain the relationships among permeability, porosity, and precipitation patterns in reservoirs, particularly in fracture-dominated reservoirs. Here, we investigate the pore-scale behavior of single-species mineral precipitation reactions in a fractured porous medium, using a phase field lattice-Boltzmann method. Parallel to the main flow direction, the medium is divided into two halves, one with a low-permeability matrix and one with a high-permeability matrix. Each matrix contains one flow-through and one dead-end fracture. A wide range of species diffusivity and reaction rates is explored to cover regimes from advection- to diffusion-dominated, and from transport- to reaction-limited. By employing the ratio of the Damköhler (Da) and the Peclet (Pe) number, four distinct precipitation patterns can be identified, namely (1) no precipitation (Da/Pe < 1), (2) near-inlet clogging (Da/Pe > 100), (3) fracture isolation (1 < Da/Pe < 100 and Pe > 1), and (4) diffusive precipitation (1 < Da/Pe < 100 and Pe < 0.1). Using moment analyses, we discuss in detail the development of the species (i.e., reactant) concentration and mineral precipitation fields for various species transport regimes. Finally, we establish a general relationship among mineral precipitation pattern, porosity, and permeability. Our study provides insights into the feedback loop of fluid flow, species transport, mineral precipitation, pore space geometry changes, and permeability in fractured porous media.
Simulating Electropulse Fracture of Granitic Rock
Walsh, S.D.C., and D. Vogler International Journal of Rock Mechanics and Mining Sciences, 128, pp. 104238, 2020. [Download PDF] [View Abstract]Electropulse treatments employ a series of high-voltage discharges to break rock into small fragments. As these methods are particularly suited to fracturing hard brittle rocks, electropulse treatments can serve to enhance or substitute for more traditional mechanical approaches to drilling and processing of these materials. Nevertheless, while these treatments have the potential to improve hard-rock operations, the coupled electro-mechanical processes responsible for damaging the rock are poorly described. The lack of accurate models for these processes increases the difficulty of designing, controlling and optimizing tools that employ electropulse treatments and limits their range of application. This paper describes a new modeling method for studying electropulse treatments in geotechnical operations. The multiphysics model simulates the passage of the pulse, electrical breakdown in the rock, and the mechanical response at the grain-scale. It also accounts for the contributions from different minerals and porosities, allowing the effect of material composition to be considered. In so doing, it provides a means to investigate the different physical and operational factors influencing electropulse treatments.