Anniina Kittilä Publications

Anniina Kittilä

PhD Student for Geothermal Energy and Geofluids

anniina_picture_231x301

Mailing Address
Anniina Kittilä
Geothermal Energy & Geofluids
Institute of Geophysics
NO F 55
Sonneggstrasse 5
CH-8092 Zurich Switzerland

Contact
Phone +41 44 6338903
Email anniina.kittila(at)erdw.ethz.ch

Administration
Dominique Ballarin Dolfin
Phone +41 44 632 3465
Email ballarin(at)ethz.ch

Publications

THESES

1.  Kittilä, A. Groundwater flow paths in the bedrock fracture zones revealed by using the stable isotopes of oxygen and hydrogen in the Talvivaara mine gypsum pond area, Northeastern Finland, MSc Thesis University of Helsinki, 68 pp., 2015. Abstract
Bedrock fracturing is considerably extensive and distinct in Finland, and the fractures that are open, conductive and interconnected usually control the groundwater flow paths in fractured bedrock. This highlights the importance of knowing the locations and hydraulic connections of water conducting fracture zones particularly in mining areas, because they can transport adverse substances outside the mining area. In this study, it is focused on examining possible hydraulic connections of bedrock groundwater by using the stable isotopes of oxygen (δ18O) and hydrogen (δ2H). The study was carried out in the Talvivaara mining area in Northeastern Finland alongside a project from the Geological Survey of Finland (GTK). After November 2012, when a leakage of acidic, metal-containing waste water occurred in the gypsum ponds, there was an urgent need to study the groundwater transport routes in the bedrock fractures. The aim was to find hydraulic connections between surface water and groundwater, and to study the flow of the groundwater in the fracture zones based on the different isotopic characteristics of waters from different sources and isotopic similarities. Most of the materials used in this study were obtained from the results of the project from the GTK. These materials included geophysical interpretations of the locations and water content of the main fracture zones and the results from the geochemical analyzes. Together with the interpretations of groundwater flow direction based on hydraulic heads these materials formed a frame for this study. The isotope composition of 39 water samples from bedrock wells, shallow wells and surface water was analyzed using cavity ring-down spectroscopy (CRDS) method. The surface waters were clearly distinguished based on their evident evaporation signal, but no significant such a signal was observed in the bedrock and shallow groundwaters. However, similarities between groundwater from different depths of same well were found, in addition to similarities between different wells along same fracture zones. Although the isotopes did not indicate surface water contamination, groundwater contamination with smaller amounts of water is possible, in which case the changes in isotope composition are not yet significant, while certain elements have elevated concentrations. A NE-SW oriented fracture zone passing in the center of the study area was concluded to have the most important role in collecting and transporting groundwater outside the mining area. More detailed interpretations would require regular sampling for a longer period of time to better distinguish naturally and artificially induced changes both in the isotopic but also geochemical compositions. Also the usage of packer tests possibly together with pumping tests would be useful in obtaining more comprehensive image of the groundwater flow in the fracture zones and their hydraulic connections.
/ Download

show/hide list of publications

THESES

1.  Kittilä, A. Groundwater flow paths in the bedrock fracture zones revealed by using the stable isotopes of oxygen and hydrogen in the Talvivaara mine gypsum pond area, Northeastern Finland, MSc Thesis University of Helsinki, 68 pp., 2015. Abstract
Bedrock fracturing is considerably extensive and distinct in Finland, and the fractures that are open, conductive and interconnected usually control the groundwater flow paths in fractured bedrock. This highlights the importance of knowing the locations and hydraulic connections of water conducting fracture zones particularly in mining areas, because they can transport adverse substances outside the mining area. In this study, it is focused on examining possible hydraulic connections of bedrock groundwater by using the stable isotopes of oxygen (δ18O) and hydrogen (δ2H). The study was carried out in the Talvivaara mining area in Northeastern Finland alongside a project from the Geological Survey of Finland (GTK). After November 2012, when a leakage of acidic, metal-containing waste water occurred in the gypsum ponds, there was an urgent need to study the groundwater transport routes in the bedrock fractures. The aim was to find hydraulic connections between surface water and groundwater, and to study the flow of the groundwater in the fracture zones based on the different isotopic characteristics of waters from different sources and isotopic similarities. Most of the materials used in this study were obtained from the results of the project from the GTK. These materials included geophysical interpretations of the locations and water content of the main fracture zones and the results from the geochemical analyzes. Together with the interpretations of groundwater flow direction based on hydraulic heads these materials formed a frame for this study. The isotope composition of 39 water samples from bedrock wells, shallow wells and surface water was analyzed using cavity ring-down spectroscopy (CRDS) method. The surface waters were clearly distinguished based on their evident evaporation signal, but no significant such a signal was observed in the bedrock and shallow groundwaters. However, similarities between groundwater from different depths of same well were found, in addition to similarities between different wells along same fracture zones. Although the isotopes did not indicate surface water contamination, groundwater contamination with smaller amounts of water is possible, in which case the changes in isotope composition are not yet significant, while certain elements have elevated concentrations. A NE-SW oriented fracture zone passing in the center of the study area was concluded to have the most important role in collecting and transporting groundwater outside the mining area. More detailed interpretations would require regular sampling for a longer period of time to better distinguish naturally and artificially induced changes both in the isotopic but also geochemical compositions. Also the usage of packer tests possibly together with pumping tests would be useful in obtaining more comprehensive image of the groundwater flow in the fracture zones and their hydraulic connections.
/ Download