Friedemann Samrock Publications

Dr. Friedemann Samrock

Senior Research Assistant

friedemann_picture_234x300

Mailing Address
Dr. Friedemann Samrock
Geothermal Energy & Geofluids
Institute of Geophysics
NO F 51.1
Sonneggstrasse 5
CH-8092 Zurich Switzerland

Contact
Phone +41 44 633 89 03
Email fsamrock@ethz.ch

Administration
Dominique Ballarin Dolfin
Phone +41 44 632 3465
Email ballarin(at)ethz.ch

Publications

REFEREED PUBLICATIONS IN JOURNALS

4.  Kuvshinov, A., J. Matzka, B. Poedjono, F. Samrock, N. Olsen, and S. Pai Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution, Earth, Planets and Space, 68 (1)/189, 2016. Download
3.  Bakker, J., A. Kuvshinov, F. Samrock, A. Geraskin, and O. Pankratov Introducing inter-site phase tensors to suppress galvanic distortion in the telluric method, Earth, Planets and Space: EPS, 67/1, pp. 160, 2015. Abstract
A common problem when interpreting magnetotelluric (MT) data is that they often are distorted by shallow unresolvable local structures, an effect known as galvanic distortion. We present two transfer functions that are (almost) resistant to galvanic distortion. First, we introduce the electric phase tensor, which is derived from the electric tensor, where the electric tensor relates the horizontal electric fields at a field and base site. The electric phase tensor is only affected by galvanic distortion, if present, at the base site. Second, we introduce the quasi-electric phase tensor, which is derived from the quasi-electric tensor, where the quasi-electric tensor relates the electric field at a field site with the magnetic field at a base site. The quasi-electric tensor is not affected by galvanic distortion. Using a synthetic data-set, we show that the sensitivity of the MT phase tensor, the quasi-electric phase tensor, and the electric phase tensor is comparable for our model under consideration. Furthermore, we demonstrate that stable (quasi-) electric phase tensors can be recovered from a real data-set with the use of existing processing software. In addition, we provide a formalism to propagate the uncertainties from the estimated (quasi-) electric and impedance tensors to their respective phase tensors. The uncertainties of the (quasi-) electric phase tensors are of the same order of magnitude as the uncertainties of the MT phase tensor. From our study, we conclude that the (quasi-) electric phase tensors are an attractive complement to the standard MT responses.
/ Download
2.  Samrock, F., A. Kuvshinov, J. Bakker, A. Jackson, and F. Shimeles 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia, Geophysical Journal International, 202/3, pp. 1923-1948, 2015. Abstract
The Main Ethiopian Rift Valley encompasses a number of volcanoes, which are known to be actively deforming with reoccurring periods of uplift and setting. One of the regions where temporal changes take place is the Aluto volcanic complex. It hosts a productive geothermal field and the only currently operating geothermal power plant of Ethiopia. We carried out magnetotelluric (MT) measurements in early 2012 in order to identify the source of unrest. Broad-band MT data (0.001-1000 s) have been acquired at 46 sites covering the expanse of the Aluto volcanic complex with an average site spacing of 1 km. Based on this MT data it is possible to map the bulk electrical resistivity of the subsurface down to depths of several kilometres. Resistivity is a crucial geophysical parameter in geothermal exploration as hydrothermal and magmatic reservoirs are typically related to low resistive zones, which can be easily sensed by MT. Thus by mapping the electrical conductivity one can identify and analyse geothermal systems with respect to their temperature, extent and potential for production of energy. 3-D inversions of the observed MT data from Aluto reveal the typical electrical conductivity distribution of a high-enthalpy geothermal system, which is mainly governed by the hydrothermal alteration mineralogy. The recovered 3-D conductivity models provide no evidence for an active deep magmatic system under Aluto. Forward modelling of the tippers rather suggest that occurrence of melt is predominantly at lower crustal depths along an off-axis fault zone a few tens of kilometres west of the central rift axis. The absence of an active magmatic system implies that the deforming source is most likely situated within the shallow hydrothermal system of the Aluto-Langano geothermal field.
/ Download
1.  Samrock, F., and A. Kuvshinov Tippers at island observatories: Can we use them to probe electrical conductivity of the Earth’s crust and upper mantle?, Geophysical Research Letters – AGU Journal, 40/5, pp. 824-828, 2013. Abstract
[1] For decades, time series of hourly-mean values of the geomagnetic field measured on a global network of observatories have been routinely used to recover the electrical conductivity distribution in midmantle depths. Nowadays, most observatories provide data in the form of minute-means. This allows for analysis of short-period geomagnetic variations, which, in principle, contain information about geoelectric structures in the crust and upper mantle. However, so far these data have been ignored for induction studies of the Earth due to a theoretical preconception. In this paper, we demonstrate that short-period responses (tippers) at island observatories, being large owing to the ocean effect, are also sensitive to 1-D structures and thus can be used for probing the Earth. This means that a huge amount of data that was not exploited hitherto for induction studies should be reconsidered as a useful source of information about geoelectric structures in oceanic regions where our knowledge is still very limited.
/ Download

THESES

2.  Samrock, F. Constraints on the source of unrest at the Aluto-Langano geothermal field, Ethiopia, inferred from 3-D interpretation of MT measurements, Dissertation ETH Zurich, 155 pp., 2015. Abstract
The global energy demand is ever rising and renewable energies are considered to be a major contributor to any future energy mix. A promising candidate is geothermal energy as it is carbon-neutral and readily available in regions that may have no access to con- ventional energy resources. Geothermal power generation is most attractive in volcanic regions with ready access to shallow high enthalpy systems. As for instance in Iceland and New Zealand, where a well established infrastructure allows profitable exploitation of geothermal resources accounting in a large part for the local energy production. One of the privileged regions possessing a remarkable, but so far largely untapped geothermal potential is the East African Rift system (EARS). The EARS is an active continental break-up zone hosting numerous young volcanic systems with most of them concentrated along its eastern branch between Mozambique and Ethiopia. Considerable progress in geothermal exploration along the EARS is so far limited to Kenya and Ethiopia, where first geothermal power plants have been installed during the 90s. Currently several geothermal projects are in progress in these regions and a considerable development of the renewable energy sector is expected in the near future. One plant is under construc- tion at Corbetti volcano in Ethiopia, once completed it is estimated to generate over 1000 MW electric power and hereby meant to be Africa’s largest geothermal power plant ( Reykjavik Geothermal , 2014). Recently the International Renewable Energy Agency (IRENA) presented a strategy to build a Clean Energy Corridor stretching from Ethiopia to South Africa to exploit the excellent renewable energy potential along the EARS focusing on hydro, geothermal, solar and wind power ( IRENA Headquarters , 2013). The aim of this project is to meet the increasing energy demand of the rapidly growing economies in East Africa by mas- sive investment in renewable energy. It is worth noting that the advantage of geothermal sources compared to other renewable sources like wind, solar and hydro power is their in- dependence from weather conditions and their constant output with availability around the clock. The region of interest addressed in this study is the Main Ethiopian Rift System, which encompasses a number of volcanoes that have been identified as potential high enthalpy geothermal systems in the past ( Endeshaw , 1988). Some of them are known to be actively deforming with reoccurring periods of uplift and setting as indicated by satellite observations ( Biggs et al. , 2011). One of the regions where temporal changes take place is the Aluto-Langano volcanic complex. It hosts Ethiopia’s currently only producing geothermal power plant, which taps a geothermal system with fluid temper- atures exceeding 350 ◦ C ( Gianel li and Teklemariam , 1993). The observed periods of uplift at Aluto took place in 2004 and 2008, they affected a region of around 100 km 2 and were followed by periods of subsidence. The power plant is located in the center of the deforming region where the maximum amplitudes of unrest occur. This state of play clearly raises the question of the unrest’s implication on the plant in terms of productivity and geohazard. The working hypothesis is that the causative source for the deformation is either in the hydrothermal reservoir, in a deeper magmatic system or in coupled magmatic-hydrothermal system. The aim of this thesis is to discriminate between the different scenarios and to delin- eate the nature of the deforming source. In order to do this we conducted magnetotel- luric (MT) measurements. This geophysical induction method uses natural occurring time-varying electromagnetic fields to decipher subsurface electrical conductivities and is especially sensitive to high conducting zones, as hydrothermal and magmatic reservoirs usually are ( Mu ̃noz , 2014). Furthermore it easily covers the necessary exploration depth down to approximately 10 km. In the past years MT has been successfully implemented in geothermal research and has proved to be a reliable and cost-efficient method in iden- tifying high enthalpy geothermal systems on the basis of subsurface conductivities. This is supported by recent and ongoing developments of efficient computational numerical methods, which make it capable to interpret and to invert for MT data in a fully 3-D manner. The study addressed in this thesis involved the whole process of organizing and plan- ning a field campaign, including logistics and customs clearance. The field measurements in Ethiopia were conducted together with a team of scientists from Addis Ababa Uni- versity, ETH Zurich, the Geological Survey of Ethiopia and local people from the survey region. In total we installed 46 MT sites covering the extent of the Aluto volcanic complex. The acquired data were processed, modeled and interpreted in context of in- terdisciplinary studies previously conducted at the Aluto volcanic complex and in the Main Ethiopian Rift System. Our recovered 3-D models reveal an electrical resistivity distribution, which is in accord with the conceptual reservoir model of a high enthalpy geothermal system, where a low resistive clay cap overlies the more resistive upflow zone ( Johnston et al. , 1992). Our models provide no evidence for an active magmatic sys- tem, this is why we conclude that the source of unrest is most likely situated within the shallower part of the hydrothermal system. In order to put constraints on possible mechanisms that might trigger the cyclic periods of uplift and setting we studied pub- lications on the analysis of well data and fluids from Aluto that were mainly published in the 90s. These studies consistently report major changes over time in the hydrother- mal regime of the geothermal field and reveal complex water-rock interaction processes taking place in at least the upper 2.6 km of the reservoir as known from well logs (e.g. Gizaw , 1993; Teklemariam et al. , 1996). On the basis of these findings we argue in favor of two different kinematic mechanisms that might trigger the observed unrest: The first mechanism is related to the hydro-mechanical behavior of clay minerals and their ten- dency to swell and shrink when exposed to changes of water saturation and pore water chemistry ( de Siqueira et al. , 1999; Xu et al. , 2006). The second mechanism we refer to is thermoelastic expansion of fractured rock consequent to forced advection of hot fluids ( Bonafede , 1991; Troiano et al. , 2011). All in all it is very likely that fluids act as causal agent driving kinematic mechanism that finally result in the observed ground level oscillations. v Based on geomagnetic transfer functions, which provide information on lateral resis- tivity contrasts we conclude that the dominating occurrence of melt is most likely at lower crustal depths along a N-S elongated off-axis zone of volcanism west of the Main Ethiopian Rift System rather than under the Aluto volcanic complex. This interesting finding is well constraint by previous magnetotelluric and seismic studies ( Whaler and Hautot , 2006; Bastow et al. , 2011; Kim et al. , 2012) and it clearly shows the impor- tance of making a regional MT survey in order to fully understand the thermal regime in the rifting zone. Understanding the plumbing system associated with the volcanoes in this region could also have a major impact on geothermal exploration and on the future deployment of geothermal power plants in Ethiopia. Widespread development of geothermal energy in the rift could meet a major part of the local energy demand resulting in a vast benefit for the Ethiopian nation.
/ Download
1.  Samrock, F. Elektrisch hochleitfähige makroskopische Strukturen – ein alternatives Modell zur Erklärung scheinbarer Mantelanisotropie unter der känozoischen Vulkanprovinz Deutschlands, MSc Thesis Georg-August-Universität zu Göttingen, 163 pp., 2010. Abstract
Die känozoische Vulkanprovinz Deutschlands ist eine Region, die während des Känozoi- kums im Tertiär bis hinein ins Quartär Schauplatz aktiven Vulkanismuses war. Die hierbei entstandenen Vulkane erstrecken sich über ca. 300 km entlang einer Reihe von der Eifel im Westen Deutschlands über den Vogelsberg, die Rhön bis zur Heldburger Gangschar in Teilen Thüringens und Bayerns (Wedepohl und Baumann, 1999). Der Vogelsberg in Hessen stellt mit rund 2500 km2 das größte zusammenhängende Vulkangebiet Mitteleuropas dar (Walter, 1995). Entsprechend ihrer interessanten geologischen Vergangenheit ist die känozoische Vulkan- provinz, die neben ihrer vulkanischen Aktivität von einer sich über gesamt Europa er- streckenden Riftstruktur durchkreuzt wird (Ziegler, 1992), langwährender Untersuchungs- gegenstand geophysikalischer Forschung mit verschiedensten Explorationsmethoden. Ein Schwerpunkt liegt hierbei in den Methoden der geophysikalischen Tiefenforschung, die es erlauben Aussagen über die Struktur und die Dynamik des Mantels zu treffen. Seismo- logische Messungen konzentrieren sich auf die Region des Rheinischen Schildes. Mit der Durchführung des großangelegten Eifel Plume Projekts in den Jahren 1997 – 1998 erhoffte man sich anhand seismologischer Messungen klärende Antworten auf die kontrovers dis- kutierte Plumehypothese zu finden. Zwar konnten unter der Eifel seismische low-velocity Anomalien nachgewiesen werden (Ritter u. a., 2001; Keyser, Ritter und Jordan, 2002), eine Klärung der Plumehypothese steht jedoch weiter aus. Die Hypothese an sich stößt vieler- orts auf Ablehnung (Meyer und Foulger, 2007). Die Analyse der Aufspaltung von Scherwellen (SKS-Scherwellen-Splitting ) ergab Hinweise auf eine seismische Anisotropie unter dem Rheinischen Schild. Eine Tiefenauflösung, mit der die Quellregion der Anisotropie bestimmt werden könnte, ist mit dieser Methode nicht möglich (Savage, 1999). Mit hoher Wahrscheinlichkeit liegt sie jedoch im oberen Mantel, da die Kruste aufgrund ihrer geringen Mächtigkeit zu keiner signifikanten Aufspaltung von Scherwellen führt (Walker u. a., 2005). Als Ursache für die seismische Anisotropie gel- ten Olivinkristalle, die aufgrund von durch den Mantelfluss induzierten Spannungsfeldern ausgerichtet werden (Zhang und Karato, 1995). Die Olivinkristalle sind bezüglich der Lauf- zeiten seismischer Wellen entlang ihrer kristallographischen Achsen anisotrop (Kumazawa und Anderson, 1969). Olivin stellt mit ca. 70% den mineralogischen Hauptbestandteil des Mantels dar. Neben seismologischen Untersuchungen war und ist die känozoische Vulkanprovinz Unter- suchungsgegenstand der elektromagnetischen Tiefenforschung. Hinweise auf die Existenz eines Eifelplumes konnte aber auch diese bisher nicht erbringen (z.B. Kuras, 1998). Jedoch konnte mit Hilfe der Magnetotellurik im gesamten Gebiet der känozoischen Vulkanprovinz eine teils tiefenabhängige Anisotropie der elektrischen Leitfähigkeit σ festgestellt werden (Hönig, 1998; Bahr u. a., 2000; Leibecker u. a., 2002; Gatzemeier und Moorkamp, 2005, u.a.). Eine Eigenschaft, die die Magnetotellurik auszeichnet, ist ihre genauere Tiefenauf- lösung, die auf den periodenabhängigen Eindringtiefen der magnetischen und elektrischen Feldvariationen beruht. Die tiefenabhängige Anisotropie untergliedert sich in zwei Berei- che – die Kruste und den Mantel. Generell ist die elektromagnetische Streichrichtung, d.h. die Richtung der hohen Leitfähigkeit, in Kruste und Mantel nicht identisch. Die elek- tromagnetische Streichrichtung in der Kruste orientiert sich vornehmlich an geologischen Großstrukturen, wie den Terrangrenzen. Als verantwortlicher Leitfähigkeitsmechanismus kommen hier in erster Linie vernetzte leitfähige Phasen, wie salinare Fluide oder Graphit, in Frage. Sie konzentrieren sich in krustalen Kluft- und Risssystemen, die sich entlang einer durch die tektonische Spannung vorgegebenen Vorzugsrichtung ausbilden. Das Hauptaugenmerk dieser Arbeit liegt auf der Struktur und der Dynamik des oberen Mantels. Dessen elektromagnetische Streichrichtung liegt unter der känozoischen Vulkan- provinz mit großer Konsistenz in Ost-West-Richtung entlang der Aufreihung der vulka- nischen Gebiete (Gatzemeier, 2001). Nach Norden hin ist eine Änderung der elektroma- gnetischen Streichrichtung auf Nord-Süd zu beobachten, während der Anisotropiefaktor im Süden Deutschlands deutlich schwächer wird (Moorkamp, 2003). Der Anisotropiefaktor ist das Verhältnis der elektrischen Leitfähigkeit σI in Streichrichtung und der elektrischen Leitfähigkeit σ⊥ senkrecht zur Streichrichtung. Die elektromagnetische Anisotropie im obe- ren Mantel wurde bisher hauptsächlich mit der Diffusion von Wasserstoffionen H+ in Olivin erklärt (Bahr u. a., 2000; Gatzemeier, 2001; Gatzemeier und Moorkamp, 2005, u.a.). Ähn- lich wie die seismische Anisotropie in Olivin ist dessen auf der Diffusion von H+-Ionen beruhende elektrische Leitfähigkeit bezüglich seiner kristallographischen Achsen anisotrop (Karato, 1990). Ferner stimmt die Richtung der hohen Leitfähigkeit mit der Richtung der hohen seismischen Geschwindigkeit überein. So ist die weltweit vielfach beobachtete Über- einstimmung von seismischer und elektrischer Anisotropie (Simpson, 2001; Gatzemeier und Moorkamp, 2005; Walker u. a., 2005) anhand einer gemeinsamen Grundlage, nämlich der Ausrichtung von Olivin, erklärbar. Jedoch gibt es hierfür auch Gegenbeispiele: Hamilton, Jones, Evans u. a. (2006) beobachteten keine Übereinstimmung von seismischer und elektri- scher Anisotropie in Südafrika. Sie schlossen daraus, dass die für die seismische Anisotropie verantwortliche Region entweder in größeren Tiefen liegt oder dass die hierfür verantwortli- chen Mechanismen keine signifikanten elektrischen Eigenschaften aufweisen. Die Forschung auf diesem Gebiet ist also längst nicht abgeschlossen. Jüngste, erste direkte Labormessun- gen der Leitfähigkeit von Olivin brachten sogar völlig gegensätzliche Ergebnisse zutage (Wang u. a., 2006; Yoshino u. a., 2006). Ungeachtet dessen liegt die elektrische Anisotropie im oberen Mantel unter der känozo- ischen Vulkanprovinz mit einem Anisotropiefaktor von A = σI/σ⊥ > 100 in einem Be- reich, der mit der H+-Diffusion in Olivin nicht erklärbar ist. Vernetzte partielle silikatische Schmelzen entfallen als alternative Erklärung. Sie besitzen zwar eine höhere Leitfähigkeit, ihr notwendiger Anteil von 10% im oberen Mantel kommt aus Gründen der Stabilität je- doch nicht in Frage. Jüngste Forschungen an karbonatischen Schmelzen ergaben, dass deren Leitfähigkeit drei Größenordnungen über der silikatischer Schmelzen liegt (Gaillard u. a., 2008a). Damit genü- gen bereits geringe Mengen, um hohe Leitfähigkeiten zu erzeugen. Aufgrund der extremen Seltenheit ihrer Erstarrungsgesteine wurden karbonatische Schmelzen zur Erklärung von Leitfähigkeitsanomalien im Mantel bisher meist nicht berücksichtigt. Die Anisotropie der Leitfähigkeit muss prinzipiell nicht von einem intrinsisch anisotropen homogenen Mantel herrühren, sondern kann auch durch makroskopische laterale Leitfähig- keitskontraste verursacht sein. Es läge dann ein heterogener Mantel vor. Die Unterschei- dung zwischen einer „echten“ Anisotropie (homogener Mantel) und einer „scheinbaren“ Anisotropie (heterogener Mantel) geschieht mittels der Methode der geomagnetischen Tie- fensondierung (Schmucker, 1970), mit der laterale Leitfähigkeitskontraste aufgedeckt wer- den können. In dieser Arbeit wird ein 3D-Modell vorgestellt, das eine sehr gute Datenanpassung auf- weist und völlig auf das Eingliedern anisotroper Schichten verzichtet. Stattdessen wird ein heterogener Mantel postuliert. Es wird gezeigt, dass die elektrische Anisotropie in einer hochleitfähigen makroskopischen Struktur im Mantel begründet sein kann, die mit der Methode der geomagnetischen Tiefensondierung nicht aufgelöst wird. Die hochleitfähige Struktur wird durch das Vorhandensein karbonatischer Schmelzen unter den Vulkanen der känozoischen Vulkanprovinz erklärt. Die Existenz der karbonatischen Schmelzen wird ab- schließend auf der Grundlage geochemischer Analysen von Magmen diskutiert. Ferner wird gezeigt, dass die bisher oft vernachlässigten hochleitfähigen Sedimente im Norden Deutsch- lands einen erheblichen Effekt haben und eine wichtigen Beitrag zur Erklärung der Daten leisten.
/ Download

show/hide list of publications

REFEREED PUBLICATIONS IN JOURNALS

4.  Kuvshinov, A., J. Matzka, B. Poedjono, F. Samrock, N. Olsen, and S. Pai Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution, Earth, Planets and Space, 68 (1)/189, 2016. Download
3.  Bakker, J., A. Kuvshinov, F. Samrock, A. Geraskin, and O. Pankratov Introducing inter-site phase tensors to suppress galvanic distortion in the telluric method, Earth, Planets and Space: EPS, 67/1, pp. 160, 2015. Abstract
A common problem when interpreting magnetotelluric (MT) data is that they often are distorted by shallow unresolvable local structures, an effect known as galvanic distortion. We present two transfer functions that are (almost) resistant to galvanic distortion. First, we introduce the electric phase tensor, which is derived from the electric tensor, where the electric tensor relates the horizontal electric fields at a field and base site. The electric phase tensor is only affected by galvanic distortion, if present, at the base site. Second, we introduce the quasi-electric phase tensor, which is derived from the quasi-electric tensor, where the quasi-electric tensor relates the electric field at a field site with the magnetic field at a base site. The quasi-electric tensor is not affected by galvanic distortion. Using a synthetic data-set, we show that the sensitivity of the MT phase tensor, the quasi-electric phase tensor, and the electric phase tensor is comparable for our model under consideration. Furthermore, we demonstrate that stable (quasi-) electric phase tensors can be recovered from a real data-set with the use of existing processing software. In addition, we provide a formalism to propagate the uncertainties from the estimated (quasi-) electric and impedance tensors to their respective phase tensors. The uncertainties of the (quasi-) electric phase tensors are of the same order of magnitude as the uncertainties of the MT phase tensor. From our study, we conclude that the (quasi-) electric phase tensors are an attractive complement to the standard MT responses.
/ Download
2.  Samrock, F., A. Kuvshinov, J. Bakker, A. Jackson, and F. Shimeles 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia, Geophysical Journal International, 202/3, pp. 1923-1948, 2015. Abstract
The Main Ethiopian Rift Valley encompasses a number of volcanoes, which are known to be actively deforming with reoccurring periods of uplift and setting. One of the regions where temporal changes take place is the Aluto volcanic complex. It hosts a productive geothermal field and the only currently operating geothermal power plant of Ethiopia. We carried out magnetotelluric (MT) measurements in early 2012 in order to identify the source of unrest. Broad-band MT data (0.001-1000 s) have been acquired at 46 sites covering the expanse of the Aluto volcanic complex with an average site spacing of 1 km. Based on this MT data it is possible to map the bulk electrical resistivity of the subsurface down to depths of several kilometres. Resistivity is a crucial geophysical parameter in geothermal exploration as hydrothermal and magmatic reservoirs are typically related to low resistive zones, which can be easily sensed by MT. Thus by mapping the electrical conductivity one can identify and analyse geothermal systems with respect to their temperature, extent and potential for production of energy. 3-D inversions of the observed MT data from Aluto reveal the typical electrical conductivity distribution of a high-enthalpy geothermal system, which is mainly governed by the hydrothermal alteration mineralogy. The recovered 3-D conductivity models provide no evidence for an active deep magmatic system under Aluto. Forward modelling of the tippers rather suggest that occurrence of melt is predominantly at lower crustal depths along an off-axis fault zone a few tens of kilometres west of the central rift axis. The absence of an active magmatic system implies that the deforming source is most likely situated within the shallow hydrothermal system of the Aluto-Langano geothermal field.
/ Download
1.  Samrock, F., and A. Kuvshinov Tippers at island observatories: Can we use them to probe electrical conductivity of the Earth’s crust and upper mantle?, Geophysical Research Letters – AGU Journal, 40/5, pp. 824-828, 2013. Abstract
[1] For decades, time series of hourly-mean values of the geomagnetic field measured on a global network of observatories have been routinely used to recover the electrical conductivity distribution in midmantle depths. Nowadays, most observatories provide data in the form of minute-means. This allows for analysis of short-period geomagnetic variations, which, in principle, contain information about geoelectric structures in the crust and upper mantle. However, so far these data have been ignored for induction studies of the Earth due to a theoretical preconception. In this paper, we demonstrate that short-period responses (tippers) at island observatories, being large owing to the ocean effect, are also sensitive to 1-D structures and thus can be used for probing the Earth. This means that a huge amount of data that was not exploited hitherto for induction studies should be reconsidered as a useful source of information about geoelectric structures in oceanic regions where our knowledge is still very limited.
/ Download

THESES

2.  Samrock, F. Constraints on the source of unrest at the Aluto-Langano geothermal field, Ethiopia, inferred from 3-D interpretation of MT measurements, Dissertation ETH Zurich, 155 pp., 2015. Abstract
The global energy demand is ever rising and renewable energies are considered to be a major contributor to any future energy mix. A promising candidate is geothermal energy as it is carbon-neutral and readily available in regions that may have no access to con- ventional energy resources. Geothermal power generation is most attractive in volcanic regions with ready access to shallow high enthalpy systems. As for instance in Iceland and New Zealand, where a well established infrastructure allows profitable exploitation of geothermal resources accounting in a large part for the local energy production. One of the privileged regions possessing a remarkable, but so far largely untapped geothermal potential is the East African Rift system (EARS). The EARS is an active continental break-up zone hosting numerous young volcanic systems with most of them concentrated along its eastern branch between Mozambique and Ethiopia. Considerable progress in geothermal exploration along the EARS is so far limited to Kenya and Ethiopia, where first geothermal power plants have been installed during the 90s. Currently several geothermal projects are in progress in these regions and a considerable development of the renewable energy sector is expected in the near future. One plant is under construc- tion at Corbetti volcano in Ethiopia, once completed it is estimated to generate over 1000 MW electric power and hereby meant to be Africa’s largest geothermal power plant ( Reykjavik Geothermal , 2014). Recently the International Renewable Energy Agency (IRENA) presented a strategy to build a Clean Energy Corridor stretching from Ethiopia to South Africa to exploit the excellent renewable energy potential along the EARS focusing on hydro, geothermal, solar and wind power ( IRENA Headquarters , 2013). The aim of this project is to meet the increasing energy demand of the rapidly growing economies in East Africa by mas- sive investment in renewable energy. It is worth noting that the advantage of geothermal sources compared to other renewable sources like wind, solar and hydro power is their in- dependence from weather conditions and their constant output with availability around the clock. The region of interest addressed in this study is the Main Ethiopian Rift System, which encompasses a number of volcanoes that have been identified as potential high enthalpy geothermal systems in the past ( Endeshaw , 1988). Some of them are known to be actively deforming with reoccurring periods of uplift and setting as indicated by satellite observations ( Biggs et al. , 2011). One of the regions where temporal changes take place is the Aluto-Langano volcanic complex. It hosts Ethiopia’s currently only producing geothermal power plant, which taps a geothermal system with fluid temper- atures exceeding 350 ◦ C ( Gianel li and Teklemariam , 1993). The observed periods of uplift at Aluto took place in 2004 and 2008, they affected a region of around 100 km 2 and were followed by periods of subsidence. The power plant is located in the center of the deforming region where the maximum amplitudes of unrest occur. This state of play clearly raises the question of the unrest’s implication on the plant in terms of productivity and geohazard. The working hypothesis is that the causative source for the deformation is either in the hydrothermal reservoir, in a deeper magmatic system or in coupled magmatic-hydrothermal system. The aim of this thesis is to discriminate between the different scenarios and to delin- eate the nature of the deforming source. In order to do this we conducted magnetotel- luric (MT) measurements. This geophysical induction method uses natural occurring time-varying electromagnetic fields to decipher subsurface electrical conductivities and is especially sensitive to high conducting zones, as hydrothermal and magmatic reservoirs usually are ( Mu ̃noz , 2014). Furthermore it easily covers the necessary exploration depth down to approximately 10 km. In the past years MT has been successfully implemented in geothermal research and has proved to be a reliable and cost-efficient method in iden- tifying high enthalpy geothermal systems on the basis of subsurface conductivities. This is supported by recent and ongoing developments of efficient computational numerical methods, which make it capable to interpret and to invert for MT data in a fully 3-D manner. The study addressed in this thesis involved the whole process of organizing and plan- ning a field campaign, including logistics and customs clearance. The field measurements in Ethiopia were conducted together with a team of scientists from Addis Ababa Uni- versity, ETH Zurich, the Geological Survey of Ethiopia and local people from the survey region. In total we installed 46 MT sites covering the extent of the Aluto volcanic complex. The acquired data were processed, modeled and interpreted in context of in- terdisciplinary studies previously conducted at the Aluto volcanic complex and in the Main Ethiopian Rift System. Our recovered 3-D models reveal an electrical resistivity distribution, which is in accord with the conceptual reservoir model of a high enthalpy geothermal system, where a low resistive clay cap overlies the more resistive upflow zone ( Johnston et al. , 1992). Our models provide no evidence for an active magmatic sys- tem, this is why we conclude that the source of unrest is most likely situated within the shallower part of the hydrothermal system. In order to put constraints on possible mechanisms that might trigger the cyclic periods of uplift and setting we studied pub- lications on the analysis of well data and fluids from Aluto that were mainly published in the 90s. These studies consistently report major changes over time in the hydrother- mal regime of the geothermal field and reveal complex water-rock interaction processes taking place in at least the upper 2.6 km of the reservoir as known from well logs (e.g. Gizaw , 1993; Teklemariam et al. , 1996). On the basis of these findings we argue in favor of two different kinematic mechanisms that might trigger the observed unrest: The first mechanism is related to the hydro-mechanical behavior of clay minerals and their ten- dency to swell and shrink when exposed to changes of water saturation and pore water chemistry ( de Siqueira et al. , 1999; Xu et al. , 2006). The second mechanism we refer to is thermoelastic expansion of fractured rock consequent to forced advection of hot fluids ( Bonafede , 1991; Troiano et al. , 2011). All in all it is very likely that fluids act as causal agent driving kinematic mechanism that finally result in the observed ground level oscillations. v Based on geomagnetic transfer functions, which provide information on lateral resis- tivity contrasts we conclude that the dominating occurrence of melt is most likely at lower crustal depths along a N-S elongated off-axis zone of volcanism west of the Main Ethiopian Rift System rather than under the Aluto volcanic complex. This interesting finding is well constraint by previous magnetotelluric and seismic studies ( Whaler and Hautot , 2006; Bastow et al. , 2011; Kim et al. , 2012) and it clearly shows the impor- tance of making a regional MT survey in order to fully understand the thermal regime in the rifting zone. Understanding the plumbing system associated with the volcanoes in this region could also have a major impact on geothermal exploration and on the future deployment of geothermal power plants in Ethiopia. Widespread development of geothermal energy in the rift could meet a major part of the local energy demand resulting in a vast benefit for the Ethiopian nation.
/ Download
1.  Samrock, F. Elektrisch hochleitfähige makroskopische Strukturen – ein alternatives Modell zur Erklärung scheinbarer Mantelanisotropie unter der känozoischen Vulkanprovinz Deutschlands, MSc Thesis Georg-August-Universität zu Göttingen, 163 pp., 2010. Abstract
Die känozoische Vulkanprovinz Deutschlands ist eine Region, die während des Känozoi- kums im Tertiär bis hinein ins Quartär Schauplatz aktiven Vulkanismuses war. Die hierbei entstandenen Vulkane erstrecken sich über ca. 300 km entlang einer Reihe von der Eifel im Westen Deutschlands über den Vogelsberg, die Rhön bis zur Heldburger Gangschar in Teilen Thüringens und Bayerns (Wedepohl und Baumann, 1999). Der Vogelsberg in Hessen stellt mit rund 2500 km2 das größte zusammenhängende Vulkangebiet Mitteleuropas dar (Walter, 1995). Entsprechend ihrer interessanten geologischen Vergangenheit ist die känozoische Vulkan- provinz, die neben ihrer vulkanischen Aktivität von einer sich über gesamt Europa er- streckenden Riftstruktur durchkreuzt wird (Ziegler, 1992), langwährender Untersuchungs- gegenstand geophysikalischer Forschung mit verschiedensten Explorationsmethoden. Ein Schwerpunkt liegt hierbei in den Methoden der geophysikalischen Tiefenforschung, die es erlauben Aussagen über die Struktur und die Dynamik des Mantels zu treffen. Seismo- logische Messungen konzentrieren sich auf die Region des Rheinischen Schildes. Mit der Durchführung des großangelegten Eifel Plume Projekts in den Jahren 1997 – 1998 erhoffte man sich anhand seismologischer Messungen klärende Antworten auf die kontrovers dis- kutierte Plumehypothese zu finden. Zwar konnten unter der Eifel seismische low-velocity Anomalien nachgewiesen werden (Ritter u. a., 2001; Keyser, Ritter und Jordan, 2002), eine Klärung der Plumehypothese steht jedoch weiter aus. Die Hypothese an sich stößt vieler- orts auf Ablehnung (Meyer und Foulger, 2007). Die Analyse der Aufspaltung von Scherwellen (SKS-Scherwellen-Splitting ) ergab Hinweise auf eine seismische Anisotropie unter dem Rheinischen Schild. Eine Tiefenauflösung, mit der die Quellregion der Anisotropie bestimmt werden könnte, ist mit dieser Methode nicht möglich (Savage, 1999). Mit hoher Wahrscheinlichkeit liegt sie jedoch im oberen Mantel, da die Kruste aufgrund ihrer geringen Mächtigkeit zu keiner signifikanten Aufspaltung von Scherwellen führt (Walker u. a., 2005). Als Ursache für die seismische Anisotropie gel- ten Olivinkristalle, die aufgrund von durch den Mantelfluss induzierten Spannungsfeldern ausgerichtet werden (Zhang und Karato, 1995). Die Olivinkristalle sind bezüglich der Lauf- zeiten seismischer Wellen entlang ihrer kristallographischen Achsen anisotrop (Kumazawa und Anderson, 1969). Olivin stellt mit ca. 70% den mineralogischen Hauptbestandteil des Mantels dar. Neben seismologischen Untersuchungen war und ist die känozoische Vulkanprovinz Unter- suchungsgegenstand der elektromagnetischen Tiefenforschung. Hinweise auf die Existenz eines Eifelplumes konnte aber auch diese bisher nicht erbringen (z.B. Kuras, 1998). Jedoch konnte mit Hilfe der Magnetotellurik im gesamten Gebiet der känozoischen Vulkanprovinz eine teils tiefenabhängige Anisotropie der elektrischen Leitfähigkeit σ festgestellt werden (Hönig, 1998; Bahr u. a., 2000; Leibecker u. a., 2002; Gatzemeier und Moorkamp, 2005, u.a.). Eine Eigenschaft, die die Magnetotellurik auszeichnet, ist ihre genauere Tiefenauf- lösung, die auf den periodenabhängigen Eindringtiefen der magnetischen und elektrischen Feldvariationen beruht. Die tiefenabhängige Anisotropie untergliedert sich in zwei Berei- che – die Kruste und den Mantel. Generell ist die elektromagnetische Streichrichtung, d.h. die Richtung der hohen Leitfähigkeit, in Kruste und Mantel nicht identisch. Die elek- tromagnetische Streichrichtung in der Kruste orientiert sich vornehmlich an geologischen Großstrukturen, wie den Terrangrenzen. Als verantwortlicher Leitfähigkeitsmechanismus kommen hier in erster Linie vernetzte leitfähige Phasen, wie salinare Fluide oder Graphit, in Frage. Sie konzentrieren sich in krustalen Kluft- und Risssystemen, die sich entlang einer durch die tektonische Spannung vorgegebenen Vorzugsrichtung ausbilden. Das Hauptaugenmerk dieser Arbeit liegt auf der Struktur und der Dynamik des oberen Mantels. Dessen elektromagnetische Streichrichtung liegt unter der känozoischen Vulkan- provinz mit großer Konsistenz in Ost-West-Richtung entlang der Aufreihung der vulka- nischen Gebiete (Gatzemeier, 2001). Nach Norden hin ist eine Änderung der elektroma- gnetischen Streichrichtung auf Nord-Süd zu beobachten, während der Anisotropiefaktor im Süden Deutschlands deutlich schwächer wird (Moorkamp, 2003). Der Anisotropiefaktor ist das Verhältnis der elektrischen Leitfähigkeit σI in Streichrichtung und der elektrischen Leitfähigkeit σ⊥ senkrecht zur Streichrichtung. Die elektromagnetische Anisotropie im obe- ren Mantel wurde bisher hauptsächlich mit der Diffusion von Wasserstoffionen H+ in Olivin erklärt (Bahr u. a., 2000; Gatzemeier, 2001; Gatzemeier und Moorkamp, 2005, u.a.). Ähn- lich wie die seismische Anisotropie in Olivin ist dessen auf der Diffusion von H+-Ionen beruhende elektrische Leitfähigkeit bezüglich seiner kristallographischen Achsen anisotrop (Karato, 1990). Ferner stimmt die Richtung der hohen Leitfähigkeit mit der Richtung der hohen seismischen Geschwindigkeit überein. So ist die weltweit vielfach beobachtete Über- einstimmung von seismischer und elektrischer Anisotropie (Simpson, 2001; Gatzemeier und Moorkamp, 2005; Walker u. a., 2005) anhand einer gemeinsamen Grundlage, nämlich der Ausrichtung von Olivin, erklärbar. Jedoch gibt es hierfür auch Gegenbeispiele: Hamilton, Jones, Evans u. a. (2006) beobachteten keine Übereinstimmung von seismischer und elektri- scher Anisotropie in Südafrika. Sie schlossen daraus, dass die für die seismische Anisotropie verantwortliche Region entweder in größeren Tiefen liegt oder dass die hierfür verantwortli- chen Mechanismen keine signifikanten elektrischen Eigenschaften aufweisen. Die Forschung auf diesem Gebiet ist also längst nicht abgeschlossen. Jüngste, erste direkte Labormessun- gen der Leitfähigkeit von Olivin brachten sogar völlig gegensätzliche Ergebnisse zutage (Wang u. a., 2006; Yoshino u. a., 2006). Ungeachtet dessen liegt die elektrische Anisotropie im oberen Mantel unter der känozo- ischen Vulkanprovinz mit einem Anisotropiefaktor von A = σI/σ⊥ > 100 in einem Be- reich, der mit der H+-Diffusion in Olivin nicht erklärbar ist. Vernetzte partielle silikatische Schmelzen entfallen als alternative Erklärung. Sie besitzen zwar eine höhere Leitfähigkeit, ihr notwendiger Anteil von 10% im oberen Mantel kommt aus Gründen der Stabilität je- doch nicht in Frage. Jüngste Forschungen an karbonatischen Schmelzen ergaben, dass deren Leitfähigkeit drei Größenordnungen über der silikatischer Schmelzen liegt (Gaillard u. a., 2008a). Damit genü- gen bereits geringe Mengen, um hohe Leitfähigkeiten zu erzeugen. Aufgrund der extremen Seltenheit ihrer Erstarrungsgesteine wurden karbonatische Schmelzen zur Erklärung von Leitfähigkeitsanomalien im Mantel bisher meist nicht berücksichtigt. Die Anisotropie der Leitfähigkeit muss prinzipiell nicht von einem intrinsisch anisotropen homogenen Mantel herrühren, sondern kann auch durch makroskopische laterale Leitfähig- keitskontraste verursacht sein. Es läge dann ein heterogener Mantel vor. Die Unterschei- dung zwischen einer „echten“ Anisotropie (homogener Mantel) und einer „scheinbaren“ Anisotropie (heterogener Mantel) geschieht mittels der Methode der geomagnetischen Tie- fensondierung (Schmucker, 1970), mit der laterale Leitfähigkeitskontraste aufgedeckt wer- den können. In dieser Arbeit wird ein 3D-Modell vorgestellt, das eine sehr gute Datenanpassung auf- weist und völlig auf das Eingliedern anisotroper Schichten verzichtet. Stattdessen wird ein heterogener Mantel postuliert. Es wird gezeigt, dass die elektrische Anisotropie in einer hochleitfähigen makroskopischen Struktur im Mantel begründet sein kann, die mit der Methode der geomagnetischen Tiefensondierung nicht aufgelöst wird. Die hochleitfähige Struktur wird durch das Vorhandensein karbonatischer Schmelzen unter den Vulkanen der känozoischen Vulkanprovinz erklärt. Die Existenz der karbonatischen Schmelzen wird ab- schließend auf der Grundlage geochemischer Analysen von Magmen diskutiert. Ferner wird gezeigt, dass die bisher oft vernachlässigten hochleitfähigen Sedimente im Norden Deutsch- lands einen erheblichen Effekt haben und eine wichtigen Beitrag zur Erklärung der Daten leisten.
/ Download