Jonathan Ogland-Hand Publications

Dr. Jonathan Ogland-Hand

Post-Doctoral Associate


Mailing Address
Dr. Jonathan Ogland-Hand
Geothermal Energy & Geofluids
Institute of Geophysics
NO F 61
Sonneggstrasse 5
CH-8092 Zurich Switzerland

Contact
Phone +41 44 633 8903
Email t.b.a.

Administration
Dominique Ballarin Dolfin
Phone +41 44 632 3465
Email ballarin(at)ethz.ch

Publications

REFEREED PUBLICATIONS IN JOURNALS

1.  Ogland-Hand, J.D., J.M. Bielicki, Y. Wang, B.M. Adams, T.A. Buscheck, and M.O. Saar The value of bulk energy storage for reducing CO2 emissions and water requirements from regional electricity systems., Energy Conversion and Management, 181, pp. 674-685, 2019. Abstract
The implementation of bulk energy storage (BES) technologies can help to achieve higher penetration and utilization of variable renewable energy technologies (e.g., wind and solar), but it can also alter the dispatch order in regional electricity systems in other ways. These changes to the dispatch order affect the total amount of carbon dioxide (CO2) that is emitted to the atmosphere and the amount of total water that is required by the electricity generating facilities. In a case study of the Electricity Reliability Council of Texas system, we separately investigated the value that three BES technologies (CO2- Geothermal Bulk Energy Storage, Compressed Air Energy Storage, Pumped Hydro Energy Storage) could have for reducing system-wide CO2 emissions and water requirements. In addition to increasing the utilization of wind power capacity, the dispatch of BES also led to an increase in the utilization of natural gas power capacity and of coal power capacity, and a decrease in the utilization of nuclear power capacity, depending on the character of the net load, the CO2 price, the water price, and the BES technology. These changes to the dispatch order provided positive value (e.g., increase in natural gas generally reduced CO2 emissions; decrease in nuclear utilization always decreased water requirements) or negative value (e.g., increase in coal generally increased CO2 emissions; increase in natural gas sometimes increased water requirements) to the regional electricity system. We also found that these values to the system can be greater than the cost of operating the BES facility. At present, there are mechanisms to compensate BES facilities for ancillary grid services, and our results suggest that similar mechanisms could be enacted to compensate BES facilities for their contribution to the environmental sustainability of the system.
/ Download

show/hide list of publications

REFEREED PUBLICATIONS IN JOURNALS

1.  Ogland-Hand, J.D., J.M. Bielicki, Y. Wang, B.M. Adams, T.A. Buscheck, and M.O. Saar The value of bulk energy storage for reducing CO2 emissions and water requirements from regional electricity systems., Energy Conversion and Management, 181, pp. 674-685, 2019. Abstract
The implementation of bulk energy storage (BES) technologies can help to achieve higher penetration and utilization of variable renewable energy technologies (e.g., wind and solar), but it can also alter the dispatch order in regional electricity systems in other ways. These changes to the dispatch order affect the total amount of carbon dioxide (CO2) that is emitted to the atmosphere and the amount of total water that is required by the electricity generating facilities. In a case study of the Electricity Reliability Council of Texas system, we separately investigated the value that three BES technologies (CO2- Geothermal Bulk Energy Storage, Compressed Air Energy Storage, Pumped Hydro Energy Storage) could have for reducing system-wide CO2 emissions and water requirements. In addition to increasing the utilization of wind power capacity, the dispatch of BES also led to an increase in the utilization of natural gas power capacity and of coal power capacity, and a decrease in the utilization of nuclear power capacity, depending on the character of the net load, the CO2 price, the water price, and the BES technology. These changes to the dispatch order provided positive value (e.g., increase in natural gas generally reduced CO2 emissions; decrease in nuclear utilization always decreased water requirements) or negative value (e.g., increase in coal generally increased CO2 emissions; increase in natural gas sometimes increased water requirements) to the regional electricity system. We also found that these values to the system can be greater than the cost of operating the BES facility. At present, there are mechanisms to compensate BES facilities for ancillary grid services, and our results suggest that similar mechanisms could be enacted to compensate BES facilities for their contribution to the environmental sustainability of the system.
/ Download