Philipp Schaedle Publications

Philipp Schaedle

PhD Student

daniel_vogler_234x323

Mailing Address
Philipp Schädle
Geothermal Energy & Geofluids
Institute of Geophysics
NO F 51.1
Sonneggstrasse 5
CH-8092 Zurich Switzerland

Contact
Phone +41 44 632 2558
Email philscha@ethz.ch

Administration
Dominique Ballarin Dolfin
Phone +41 44 632 3465
Email ballarin(at)ethz.ch

Publications

REFEREED PUBLICATIONS IN JOURNALS

3.  Garapati, N., B.M. Adams, J.M. Bielicki, P. Schaedle, J.B. Randolph, T.H. Kuehn, and M.O. Saar A Hybrid Geothermal Energy Conversion Technology – A Potential Solution for Production of Electricity from Shallow Geothermal Resources, Energy Procedia, 114, pp. 7107-7117, 2017. Abstract
Geothermal energy has been successfully employed in Switzerland for more than a century for direct use but presently there is no electricity being produced from geothermal sources. After the nuclear power plant catastrophe in Fukushima, Japan, the Swiss Federal Assembly decided to gradually phase out the Swiss nuclear energy program. Deep geothermal energy is a potential resource for clean and nearly CO2-free electricity production that can supplant nuclear power in Switzerland and worldwide. Deep geothermal resources often require enhancement of the permeability of hot-dry rock at significant depths (4-6 km), which can induce seismicity. The geothermal power projects in the Cities of Basel and St. Gallen, Switzerland, were suspended due to earthquakes that occurred during hydraulic stimulation and drilling, respectively. Here we present an alternative unconventional geothermal energy utilization approach that uses shallower, lower-temperature, naturally permeable regions, that drastically reduce drilling costs and induced seismicity. This approach uses geothermal heat to supplement a secondary energy source. Thus this hybrid approach may enable utilization of geothermal energy in many regions in Switzerland and elsewhere, that otherwise could not be used for geothermal electricity generation. In this work, we determine the net power output, energy conversion efficiencies, and economics of these hybrid power plants, where the geothermal power plant is actually a CO2-based plant. Parameters varied include geothermal reservoir depth (2.5-4.5 km) and turbine inlet temperature (100-220 °C) after auxiliary heating. We find that hybrid power plants outperform two individual, i.e., stand-alone geothermal and waste-heat power plants, where moderate geothermal energy is available. Furthermore, such hybrid power plants are more economical than separate power plants.
/ Download
2.  Schaedle, P., T. Kaempfer, G. Pepin, J. Wendling, and J. Bommundt Combining high-resolution two-phase with simplified single-phase simulations in order to optimize the performance of PA/SA simulations for a deep geological repository for radioactive waste, Geological Society, London, Special Publications, 433/443/SP443.4, 2016. Abstract
The transport of a radioactive solute during the transient thermo-hydraulic regime with
gas generation in and around a disposal cell depends on complex multi-phase processes. Numerical
simulations can improve the understanding of the system by providing detailed information on the
temporal and spatial distribution of the radionuclides. In particular, their fluxes can be computed
under the given transient conditions considering radionuclide, heat and gas release from the
waste. However, such detailed multi-phase simulations are very demanding with respect to com-
putational resources and time. Based on the knowledge gained from such complex simulations, we
have developed a robust simplified single-phase approach for performance and safety assessment,
the improved efficiency of which enables extensive parameter studies. The simplified approach
comprises, on the one hand, homogenization of features of high detail and, on the other hand,
the employment of two-phase simulation results that are used to deduce equivalent single-phase
parameterizations. The results have been validated with various benchmark criteria at well-defined
interfaces in the modelled disposal cells based on the simulated radionuclides fluxes.
/ Download
1.  Schaedle, P., N. Hubschwerlen, and H. Class Optimizing the modeling performance for safety assessments of nuclear waste repositories by approximating two-phase flow and transport by single-phase transport simulations, Nuclear Technology/187(2), pp. 188-197, 2014. / Download

THESES

1.  Schaedle, P. Rechenzeitoptimierung bei numerischen Sicherheitsabschätzungen für Atommüll-Endlager, MSc Thesis University of Stuttgart, 82 pp., 2012. Abstract
Seit Mitte der 50er Jahre werden Atomkraftwerke gebaut und somit auch Abfälle produziert, die grosse Schwierigkeiten in der Handhabung und Lagerung mit sich bringen. Das grösste Problem liegt nicht in der Menge der Abfälle, sondern in der langanhaltenden schädlichen Strahlendosis die von den Abfällen abgegeben wird. Die momentan wissenschaftlich und wirtschaftlich vorherrschende Meinung ist, den Müll in geologischen Tiefenlagern zu deponieren. In der Vergangenheit wurden bereits unterschiedliche Gesteinsformationen als Endlagerstätten untersucht, getestet und auch eingesetzt. Viele haben sich jedoch als ungeeignet für die Deponierung atomaren Abfalls herausgestellt. Derzeit werden in Frankreich und der Schweiz Tonformationen als potenzielle Endlagerstandorte untersucht. Die geringe Durchlässigkeit und gleichermassen die über einen langen Zeitraum anhaltende Verschlusswirkung in Bezug auf Druck und Temperatur zeichnen eine Tonformation gegenüber Salz- oder Kristallinformationen aus. Zur Beurteilung eines potenziellen Endlagerstandorts werden geologische Erkundungen und Studien durchgeführt. Nach der ersten Erkundungsphase gilt es den Standort genauer zu untersuchen und das Gestein hinsichtlich seines Verhaltens während der Einlagerung zu verstehen. Um letztendlich eine Aussage über die Leistungsfähigkeit und Sicherheit eines potenziellen Endlagers machen zu können, sind auf Grundlage der zuvor gewonnenen Erkenntnisse umfangreiche numerische Simulationen nötig. Im Rahmen dieser Simulationen müssen unter anderem in der näheren Umgebung der Einlagerungsstollen hochaufgelöste Detailmodelle erstellt werden. Diese Modelle stellen die komplexen physikalischen Prozesse dar, die während der Einlagerung und nach dem Verschluss des Stollens ablaufen. Um möglichst viele Erkenntnisse über eventuelle Ereignisse oder Parameterunsicherheiten zu sammeln, müssen zusätzlich zu diesen Detailmodellen, deterministische und probabilistische Sicherheitsanalysen durchgeführt werden. Diese Arbeit wird bei der AF-Consult Switzerland AG im Rahmen eines durch die französische ANDRA (Agence nationale pour la gestion des déchets radioactifs – Französische nationale Agentur für die Entsorgung radioaktiver Abfälle) beauftragten Projekts durchgeführt. Dieses befasst sich mit der Optimierung und der effektiveren Umsetzung der Simulationen zur Berechnung der Radionuklidausbreitung. Durch die Projektvorgaben der ANDRA wird sich diese Arbeit an dem Endlagerkonzept der ANDRA orientieren. Die erarbeiteten numerischen Methoden sind aber gleichermassen auf andere Konzepte und Aufgabenstellungen anwendbar. Ein im Zusammenhang mit dieser Arbeit verfasster Konferenzbeitrag für das „TOUGH Symposium 2012“ wurde mit dem „Karsten Pruess Student Paper Award“ ausgezeichnet.
/ Download

show/hide list of publications

REFEREED PUBLICATIONS IN JOURNALS

3.  Garapati, N., B.M. Adams, J.M. Bielicki, P. Schaedle, J.B. Randolph, T.H. Kuehn, and M.O. Saar A Hybrid Geothermal Energy Conversion Technology – A Potential Solution for Production of Electricity from Shallow Geothermal Resources, Energy Procedia, 114, pp. 7107-7117, 2017. Abstract
Geothermal energy has been successfully employed in Switzerland for more than a century for direct use but presently there is no electricity being produced from geothermal sources. After the nuclear power plant catastrophe in Fukushima, Japan, the Swiss Federal Assembly decided to gradually phase out the Swiss nuclear energy program. Deep geothermal energy is a potential resource for clean and nearly CO2-free electricity production that can supplant nuclear power in Switzerland and worldwide. Deep geothermal resources often require enhancement of the permeability of hot-dry rock at significant depths (4-6 km), which can induce seismicity. The geothermal power projects in the Cities of Basel and St. Gallen, Switzerland, were suspended due to earthquakes that occurred during hydraulic stimulation and drilling, respectively. Here we present an alternative unconventional geothermal energy utilization approach that uses shallower, lower-temperature, naturally permeable regions, that drastically reduce drilling costs and induced seismicity. This approach uses geothermal heat to supplement a secondary energy source. Thus this hybrid approach may enable utilization of geothermal energy in many regions in Switzerland and elsewhere, that otherwise could not be used for geothermal electricity generation. In this work, we determine the net power output, energy conversion efficiencies, and economics of these hybrid power plants, where the geothermal power plant is actually a CO2-based plant. Parameters varied include geothermal reservoir depth (2.5-4.5 km) and turbine inlet temperature (100-220 °C) after auxiliary heating. We find that hybrid power plants outperform two individual, i.e., stand-alone geothermal and waste-heat power plants, where moderate geothermal energy is available. Furthermore, such hybrid power plants are more economical than separate power plants.
/ Download
2.  Schaedle, P., T. Kaempfer, G. Pepin, J. Wendling, and J. Bommundt Combining high-resolution two-phase with simplified single-phase simulations in order to optimize the performance of PA/SA simulations for a deep geological repository for radioactive waste, Geological Society, London, Special Publications, 433/443/SP443.4, 2016. Abstract
The transport of a radioactive solute during the transient thermo-hydraulic regime with
gas generation in and around a disposal cell depends on complex multi-phase processes. Numerical
simulations can improve the understanding of the system by providing detailed information on the
temporal and spatial distribution of the radionuclides. In particular, their fluxes can be computed
under the given transient conditions considering radionuclide, heat and gas release from the
waste. However, such detailed multi-phase simulations are very demanding with respect to com-
putational resources and time. Based on the knowledge gained from such complex simulations, we
have developed a robust simplified single-phase approach for performance and safety assessment,
the improved efficiency of which enables extensive parameter studies. The simplified approach
comprises, on the one hand, homogenization of features of high detail and, on the other hand,
the employment of two-phase simulation results that are used to deduce equivalent single-phase
parameterizations. The results have been validated with various benchmark criteria at well-defined
interfaces in the modelled disposal cells based on the simulated radionuclides fluxes.
/ Download
1.  Schaedle, P., N. Hubschwerlen, and H. Class Optimizing the modeling performance for safety assessments of nuclear waste repositories by approximating two-phase flow and transport by single-phase transport simulations, Nuclear Technology/187(2), pp. 188-197, 2014. / Download

THESES

1.  Schaedle, P. Rechenzeitoptimierung bei numerischen Sicherheitsabschätzungen für Atommüll-Endlager, MSc Thesis University of Stuttgart, 82 pp., 2012. Abstract
Seit Mitte der 50er Jahre werden Atomkraftwerke gebaut und somit auch Abfälle produziert, die grosse Schwierigkeiten in der Handhabung und Lagerung mit sich bringen. Das grösste Problem liegt nicht in der Menge der Abfälle, sondern in der langanhaltenden schädlichen Strahlendosis die von den Abfällen abgegeben wird. Die momentan wissenschaftlich und wirtschaftlich vorherrschende Meinung ist, den Müll in geologischen Tiefenlagern zu deponieren. In der Vergangenheit wurden bereits unterschiedliche Gesteinsformationen als Endlagerstätten untersucht, getestet und auch eingesetzt. Viele haben sich jedoch als ungeeignet für die Deponierung atomaren Abfalls herausgestellt. Derzeit werden in Frankreich und der Schweiz Tonformationen als potenzielle Endlagerstandorte untersucht. Die geringe Durchlässigkeit und gleichermassen die über einen langen Zeitraum anhaltende Verschlusswirkung in Bezug auf Druck und Temperatur zeichnen eine Tonformation gegenüber Salz- oder Kristallinformationen aus. Zur Beurteilung eines potenziellen Endlagerstandorts werden geologische Erkundungen und Studien durchgeführt. Nach der ersten Erkundungsphase gilt es den Standort genauer zu untersuchen und das Gestein hinsichtlich seines Verhaltens während der Einlagerung zu verstehen. Um letztendlich eine Aussage über die Leistungsfähigkeit und Sicherheit eines potenziellen Endlagers machen zu können, sind auf Grundlage der zuvor gewonnenen Erkenntnisse umfangreiche numerische Simulationen nötig. Im Rahmen dieser Simulationen müssen unter anderem in der näheren Umgebung der Einlagerungsstollen hochaufgelöste Detailmodelle erstellt werden. Diese Modelle stellen die komplexen physikalischen Prozesse dar, die während der Einlagerung und nach dem Verschluss des Stollens ablaufen. Um möglichst viele Erkenntnisse über eventuelle Ereignisse oder Parameterunsicherheiten zu sammeln, müssen zusätzlich zu diesen Detailmodellen, deterministische und probabilistische Sicherheitsanalysen durchgeführt werden. Diese Arbeit wird bei der AF-Consult Switzerland AG im Rahmen eines durch die französische ANDRA (Agence nationale pour la gestion des déchets radioactifs – Französische nationale Agentur für die Entsorgung radioaktiver Abfälle) beauftragten Projekts durchgeführt. Dieses befasst sich mit der Optimierung und der effektiveren Umsetzung der Simulationen zur Berechnung der Radionuklidausbreitung. Durch die Projektvorgaben der ANDRA wird sich diese Arbeit an dem Endlagerkonzept der ANDRA orientieren. Die erarbeiteten numerischen Methoden sind aber gleichermassen auf andere Konzepte und Aufgabenstellungen anwendbar. Ein im Zusammenhang mit dieser Arbeit verfasster Konferenzbeitrag für das „TOUGH Symposium 2012“ wurde mit dem „Karsten Pruess Student Paper Award“ ausgezeichnet.
/ Download